
1

.

openSMILE

the Munich open Speech and Music Interpretation by Large Space
Extraction toolkit

Version 1.0.1, May 23rd 2010

Copyright (C) 2010 by

Florian Eyben, Martin Woellmer, and Bjoern Schuller

E-mails: last-name at tum.de

Institute for Human-Machine Communication
Technische Universitaet Muenchen (TUM)

D-80333 Munich, Germany
http://www.mmk.ei.tum.de

The official openSMILE homepage can be found at: http://opensmile.sourceforge.net/

This documentation was written by Florian Eyben.

http://www.mmk.ei.tum.de
http://opensmile.sourceforge.net/

2

Contents

1 About openSMILE 5
1.1 What is openSMILE? . 5
1.2 Who needs openSMILE? . 6
1.3 Licensing . 6
1.4 Capabilities - Overview . 6

2 Using openSMILE 11
2.1 Obtaining and Installing openSMILE . 11
2.2 Compiling the openSMILE source code . 12

2.2.1 Build instructions for the impatient . 13
2.2.2 Compiling on Linux/Mac . 14
2.2.3 Compiling on Linux/Mac with PortAudio 16
2.2.4 Compiling on Windows . 17
2.2.5 Compiling on Windows with PortAudio 17

2.3 Extracting your first features . 18
2.4 What is going on inside of openSMILE . 22

2.4.1 Incremental processing . 24
2.4.2 Smile messages . 26
2.4.3 openSMILE terminology . 26

2.5 Default feature sets . 26
2.5.1 Chroma features . 27
2.5.2 MFCC features . 27
2.5.3 PLP features . 28
2.5.4 Prosodic features . 28
2.5.5 Extracting features for emotion recognition 29

2.6 Using Portaudio for live recording/playback . 32
2.7 Visualising data with Gnuplot . 33

3 Reference section 35
3.1 General usage - SMILExtract . 35
3.2 Understanding configuration files . 37

3.2.1 Enabling components . 37
3.2.2 Configuring components . 38
3.2.3 Including other configuration files . 39
3.2.4 Linking to command-line options . 39
3.2.5 Defining variables . 39
3.2.6 Comments . 39

3.3 Component description . 40
3.3.1 cComponentManager . 40

3

4 CONTENTS

3.3.2 Basic data memory and interface components 41
3.3.3 Data sources . 44
3.3.4 Data sinks . 52
3.3.5 Live data sinks (classifiers) . 61
3.3.6 Low-level features and signal processing 62
3.3.7 Functionals . 144

3.4 Feature names . 155

4 Developer’s Documentation 157

5 Additional Support 159

6 Acknowledgement 161

Chapter 1

About openSMILE

We start introducing openSMILE by addressing two important questions for users who are new
to openSMILE : What is openSMILE ? and Who needs openSMILE ?. If you want to start
using openSMILE right away, then you should start reading section 2, or section 2.3 if you have
already managed to install openSMILE.

1.1 What is openSMILE?

The Munich open Speech and Music Interpretation by Large Space Extraction (openSMILE)
toolkit is a modular and flexible feature extractor for signal processing and machine learning
applications. The primary focus is clearly put on audio-signal features. However, due to their
high degree of abstraction, openSMILE components can also be used to analyse signals from
other modalities, such as physiological signals, visual signals, and other physical sensors, given
suitable input components. It is written purely in C++, has a fast, efficient, and flexible
architecture, and runs on various main-stream platforms such as Linux, Windows, and MacOS.
openSMILE is designed for real-time online processing, but can also be used off-line in batch
mode for processing of large data-sets. This is a feature rarely found in related feature extraction
software. Most of related projects are designed for off-line extraction and require the whole input
to be present. openSMILE can extract features incrementally as new data arrives. By using the
PortAudio1 library, openSMILE features platform independent live audio input and live audio
playback, which enabled the extraction of audio features in real-time.

To facilitate interoperability, openSMILE supports reading and writing of various data for-
mats commonly used in the field of data mining and machine learning. These formats include
PCM WAVE for audio files, CSV (Comma Separated Value, spreadsheet format) and ARFF
(Weka Data Mining) for text-based data files, HTK (Hidden-Markov Toolkit) parameter files,
and a simple binary float matrix format for binary feature data.

Using the open-source software gnuplot2, extracted features which are dumped to files can be
visualised. A strength of openSMILE , due to its highly modular architecture is that almost all
intermediate data which is generated during the feature extraction process (such as windowed
audio data, spectra, etc.) can be accessed and saved to files for visualisation or further processing.

1http://www.portaudio.com
2http://www.gnuplot.info/

5

http://www.portaudio.com
http://www.gnuplot.info/

6 CHAPTER 1. ABOUT OPENSMILE

1.2 Who needs openSMILE?

openSMILE is intended to be used for research applications, demonstrators, and prototypes
in the first place. Thus, the target group of users is researchers and system developers. Due
to its compact code and modular architecture, using openSMILE for the final product is also
considerable. However, we would like to stress at this point that commercial products ether
have to fully comply with the GNU General Public License (see section 1.3), or acquire a
custom commercial license.

Currently, openSMILE is used by researchers and companies all around the world, which are
working in the field of speech recognition (feature extraction front-end, keyword spotting, etc.),
the area of affective computing (emotion recognition, affect sensitive virtual agents, etc.), and
Music Information Retrieval (chord labelling, beat tracking, onset detection etc.).

1.3 Licensing

openSMILE follows a dual-licensing model. Since the main goal of the project is a widespread
use of the software to facilitate research in the field of machine learning from audio signals, the
source code and the binaries are freely available under the terms of the GNU General Public
License3 (GPL). This version - the community version - includes all third party code taken from
related GPLed projects and all contributions (which are also subject to the GPL).

Since the GPL might be an obstacle for some entities which do not wish to share are not
allowed to share their code with the community, we offer a customised commercial license upon
request. This version - the commercial version - does not include GPL third party code, which
however does not affect the core functionality. If you are interested in licensing openSMILE
, please contact Florian Eyben (eyben@tum.de) or Björn Schuller (schuller@tum.de) for more
information.

1.4 Capabilities - Overview

This section gives a brief summary on openSMILE’s capabilities. The capabilities are distin-
guished by the following categories: data input, signal processing, general data processing,
low-level audio features, functionals, classifiers and other components, data output, and other
capabilities.

Data input: openSMILE can read data from the following file formats:

• RIFF-WAVE (PCM) (for MP3, MP4, OGG, etc. a converter needs to be used)

• Comma Separated Value (CSV)

• HTK parameter files

• WEKA’s ARFF format.

Additionally, live recording of audio from any PC sound-card is supported via the PortAu-
dio library. For generating white noise, sinusoidal tones (soon), and constant values a signal
Generator is provided.

3http://www.gnu.org/

http://www.gnu.org/

1.4. CAPABILITIES - OVERVIEW 7

Signal Processing: The following functionality is provided for general signal processing or
signal pre-processing (prior to feature extraction):

• Windowing-functions (Rectangular, Hamming, Hann (raised cosine), Gauss, Sine, Trian-
gular, Bartlett, Bartlett-Hann, Blackmann, Blackmann-Harris, Lanczos)

• Pre-/De-emphasis (i.e. 1st order high/low-pass)

• Re-sampling (spectral domain algorithm)

• FFT (magnitude, phase, complex) and inverse

• Scaling of spectral axis via spline interpolation (open-source version only)

• dbA weighting of magnitude spectrum

• Autocorrelation function (ACF) (via IFFT of power spectrum)

• Average magnitude difference function (AMDF)

Data Processing: openSMILE can perform a number of operations for feature normalisation,
modification, and differentiation:

• Mean-Variance normalisation (off-line and on-line)

• Histogram equalisation (experimental)

• Delta-Regression coefficients (and simple differential)

• Weighted Differential as in [SER07]

• Various vector operations: length, element-wise addition, multiplication, logarithm, and
power.

• Moving average filter for smoothing of contour over time.

Audio features (low-level): The following (audio specific) low-level descriptors can be com-
puted by openSMILE :

• Frame Energy

• Frame Intensity / Loudness (approximation)

• Critical Band spectra (Mel/Bark/Octave, triangular masking filters)

• Mel-/Bark-Frequency-Cepstral Coefficients (MFCC)

• Auditory Spectra

• Perceptual Linear Predictive Coefficients (PLP)

• Linear Predictive Coefficients (LPC)

• Line Spectral Pairs (LSP, aka. LSF)

• Fundamental Frequency (via ACF/Cepstrum method and via Subharmonic-Sampling (SHS))

• Probability of Voicing

8 CHAPTER 1. ABOUT OPENSMILE

• Voice-Quality: Jitter and Shimmer

• Formant frequencies and bandwidths (from LPC roots), currently open-source version only

• Zero-Crossing rate

• Spectral features (arbitrary band energies, roll-off points, centroid, entropy, maxpos, min-
pos, variance (=spread), skewness, kurtosis, slope)

• CHROMA (octave warped semitone spectra) and CENS features (energy normalised and
smoothed CHROMA)

• CHROMA-derived Features for Chord and Key recognition

Functionals: In order to map contours of low-level descriptors onto a vector of fixed dimen-
sionality, the following functionals can be applied:

• Extreme values and positions

• Means (arithmetic, quadratic, geometric)

• Moments (standard deviation, variance, kurtosis, skewness)

• Percentiles and percentile ranges

• Regression (linear and quadratic approximation, regression error)

• Centroid

• Peaks

• Segments

• Sample values

• Times/durations

• Onsets

• Discrete Cosine Transformation (DCT)

• Zero-Crossings

Classifiers and other components: Live demonstrators for audio processing tasks often
require segmentation of the audio stream. openSMILE provides voice activity detection algo-
rithms for this purpose, and a turn detector. For incrementally classifying the features extracted
from the segments, Support Vector Machines are implemented using the LibSVM library.

• Voice Activity Detection based on Fuzzy Logic

• NN-classifier for adaptive voice activity detection

• Turn detector

• LibSVM (on-line)

1.4. CAPABILITIES - OVERVIEW 9

Data output: For writing data data to files, the same formats as on the input side are
supported, except for an additional binary matrix format:

• RIFF-WAVE (PCM uncompressed audio)

• Comma Separated Value (CSV)

• HTK parameter file

• WEKA ARFF file

• LibSVM feature file format

• Binary float matrix format

Additionally, live audio playback is supported via the Portaudio library.

Other capabilites : Besides input, signal processing, feature extraction, functionals, and
output components, openSMILE comes with a few other capabilites (to avoid confusion, we do
not use the term ‘features’ here), which make using openSMILE easy and versatile:

Multi-threading Independent components can be run in parallel to make use of multiple CPUs
or CPU cores and thus speed up feature extraction where time is critical.

Plugin-support Additional components can be built as shared libraries (or DLLs on windows)
linked against openSMILE’s core API library. Such plugins are automatically detected
during initialisation of the program, if they are placed in the plugins subdirectory.

Extensive logging Log messages are handled by a smileLogger component, which currently
is capable of saving the log messages to a file and printing them to the standard error
console. The detail of the messages can be controlled by setting the log-level. For easier
interpretation of the messages, the types Message (MSG), Warning (WRN), Error (ERR),
and Debug (DBG) are distinguished.

Flexible configuration openSMILE can be fully configured via one single text based config-
uration file. This file is kept in a simple, yet very powerful, property file format. Thereby
each component has it’s own section, and all components can be connected via their link to
a central data memory component. The configuration file even allows for defining custom
command-line options (e.g. for input and output files), and including other configuration
files.

Incremental processing All components in openSMILE follow strict guidelines to meet the
requirements of incremental processing. It is not allowed to require access to the full input
sequence and seek back and forth within the sequence, for example. Principally each
component must be able to process its data frame by frame or at least as soon as possible.
Some exceptions to this rule have been granted for components which are only used during
off-line feature extraction, such as components for overall mean normalisation.

10 CHAPTER 1. ABOUT OPENSMILE

Chapter 2

Using openSMILE

Now we describe how to get started with using openSMILE . First, we will explain how to obtain
and install openSMILE . If you already have a working installation of openSMILE you can skip
directly to section 2.3, where we explain how to use openSMILE for your first feature extraction
task. We then give an overview on openSMILE’s architecture in section 2.4. This will help
you to understand what is going on inside openSMILE , and why certain things are easy, while
others may be tricky to do. Next, to make full use of openSMILE’s capabilities it is important
that you learn to write openSMILE configuration files. Section 3.2 will explain all necessary
aspects. Finally, to make your life a bit simpler and to provide common feature sets to the
research community for various tasks, some example configuration files are provided. These are
explained in section 2.5. In section 2.6 we will teach you how to use the PortAudio interface
components to set up a simple audio recorder and player as well as a full live feature extraction
system. How you can visualise the extracted features using the open-source tool gnuplot, is
explained in section 2.7.

2.1 Obtaining and Installing openSMILE

Note for the impatient: If you have already downloaded openSMILE, and are an expert at com-
piling software on Windows and/or Linux, you may skip to section 2.2.1, which contains the
quick-start compilation instructions.

The latest stable release of openSMILE can be found at http://opensmile.sourceforge.
net/. For the latest code from the subversion repository you can use the following checkout
command on the command-line if you have the ‘subversion’ package installed:

svn co https://opensmile.svn.sourceforge.net/svnroot/opensmile opensmile

Please note, that the latest development code may not always compile cleanly, since not all
build projects (linux Makefile, visual studio projects, different configurations, etc.) are properly
synchronised when new components are added or old components are deleted. If you spot any
missing file problems when working with the SVN code, please try to add the missing files to
the build projects, and send the updated version to the authors. If the missing files cannot be
found in the SVN repository, please contact the authors.

For the release version, you can choose between binary releases for Linux and Windows (which
also includes the source code), or get a source only release and compile it yourself. The latter is
the recommended way for Linux/Unix and Mac OS systems. A binary release package contains
the statically linked main executable SMILExtract for Linux systems and a SMILExtract.exe

11

http://opensmile.sourceforge.net/
http://opensmile.sourceforge.net/

12 CHAPTER 2. USING OPENSMILE

and openSmileLib.dll for Windows systems, example configuration files in the config/ folder,
and scripts for visualisation in the scripts/ folder.

The binary releases are ready to use. For Linux, several binaries are provided for various
system architectures and CPU optimisations. You must choose the one that suits your platform.
These executables are placed in the bin directory:

S M I L E x t r a c t s t a t i c 3 2 b i t g e n e r i c
S M I L E x t r a c t s t a t i c 3 2 b i t s s e
S M I L E x t r a c t s t a t i c 6 4 b i t g e n e r i c
S M I L E x t r a c t s t a t i c 6 4 b i t s s e

These binaries are statically linked (i.e. the opensmile lib is linked statically, thus they only
depend on pthreads and glibc). 32 bit and 64 bit versions are provided (both compiled on SUSE
linux). The sse versions are optimised to make use of the SSE instruction set (available on most
modern CPUs). If your CPU does not have SSE instructions, use the generic versions. Now,
pick your desired executable, and rename or copy the executable which suits your platform to
SMILExtract in the top-level directory of the openSMILE distribution. Executables which are
linked against PortAudio have a pa appended to their filenames (they are only provided for
Windows). To test if your release works, change to the top-level directory of the distribution
and type

./SMILExtract -h

in the shell prompt on Unix systems or

SMILExtract -h

in the Windows command-line prompt. If you see the usage information everything is working.
To simplify using openSMILE you should copy the binary of choice to a directory in your
path, e.g. /usr/local/bin on Linux or C:\Windows\ or C:\Windows\system32 on Windows
systems, or add the openSMILE package directory to your path. Please be sure to also copy
libopensmile.dll on Windows systems.

For Windows binaries with PortAudio support (PA suffix) and binaries without portaudio
support are provided. A compiled portaudio dll is also provided, which is linked against the
Windows Media Extensions API. All these executables can be found in the bin subdirectory
and your version of choice must be copied to SMILExtract.ext in the top-level directory of the
openSMILE distribution in order to be able to execute the example commands in this tutorial as
they are printed (You must also copy the corresponding .dll to the top-level directory, however,
without renaming it!).

Note for Linux: The Linux binaries contained in the release are statically linked binaries,
i.e. the shared API libopensmile is linked into the binary. The binaries only depend on libc6
and pthreads. The downside of this method is that you cannot use binary plugins with these
binaries! In order to use plugins, you must compile the source code to obtain a binary linked
dynamically to libopensmile (see section 2.2.2). As no binary release with PortAudio support
is provided for Linux, in order to use PortAudio audio recording/playback, you must compile
from the source code (see section 2.2.2).

If you have obtained a source only release, read the next section on how to compile and
install it.

2.2 Compiling the openSMILE source code

The core of openSMILE compiles without any third-party dependencies, except for pthreads
on Unix systems. The core version is a command-line feature extractor only. You can not do

2.2. COMPILING THE OPENSMILE SOURCE CODE 13

live audio recording/playback with this version. In order to compile with live audio support,
you need the PortAudio1 library. This will add support for audio recording and playback on
Linux, Windows, and Mac OS. Please refer to section 2.2.3 for instructions on how to compile
with PortAudio support on Linux and section 2.2.5 for Windows. However, be sure to read the
compilation instructions for the standalone version in sections 2.2.2 and 2.2.4 first.

2.2.1 Build instructions for the impatient

This section provides quick start build instructions, for people who are familiar with building
applications from source on Unix and Windows. If these instructions don’t work for you, if you
get build errors, or you require more detailed information, then please refer to the following
sections for more detailed instructions, especially for Unix build environments.

We will always distinguish between building with PortAudio support for live audio play-
back and recording, and building the standalone version without any third-party dependencies.
Building without PortAudio is easier, since you will get a single statically-linked executable,
which is sufficient for all off-line command-line feature extraction tasks.

Unix The very short version: sh buildStandalone.sh or sh buildWithPortAudio.sh,
then use the binary inst/bin/SMILExtract.
The little longer version of the short build instructions: unpack the openSMILE archive by
typing:

tar -zxvf openSMILE-1.0.0.tar.gz

This creates a folder called openSMILE-1.0.0. Change to this directory by typing:

cd openSMILE-1.0.0

Then (assuming you have a running build system installed (autotools, libtool, make, gcc and
g++ compiler, ...) and are using a bash compatible shell) all you need to do is type:

sh buildStandalone.sh

This will configure, build, and install the openSMILE binary SMILExtract to the inst/bin

subdirectory. Add this directory to your path, or copy inst/bin/SMILExtract to a directory
in your search path. Optionally you can pass an install prefix path to the script as first and
only parameter:

sh buildStandalone.sh /my/path/to/install/to

To compile openSMILE with PortAudio support, if PortAudio is NOT installed on your
system type (optionally specifying an installation prefix for portaudio and openSMILE as first
parameter):

sh buildWithPortAudio.sh [install-prefix path]

A PortAudio snapshot is included in the thirdparty subdirectory. This will be unpacked,
configured, and installed, then openSMILE will be configured to use this installation. If you
want to build and link against the PortAudio version installed on your system, type (optionally
specifying an installation prefix for openSMILE as first parameter):

sh buildWithInstalledPortAudio.sh [install-prefix path]

The built executable is called SMILExtract and is found in the inst/bin sub-directory. Please
note, that in this case, it is a wrapper script, which sets up the library path and calls the actual
binary SMILExtract.bin.

1Available at: http://www.portaudio.com/

http://www.portaudio.com/

14 CHAPTER 2. USING OPENSMILE

Windows

Important note for building on Windows: Visual Studio always selects the
‘Debug’ configuration by default instead of the ‘Release’ configuration. However,
you always want to build the ‘Release’ configuration, unless you are an openSMILE
developer. Thus, you mus always select the ‘Release’ configuration from the drop-
down menu, before clicking on ‘Build Solution’ !!

The very short version: ide/vs05/openSmile.sln for the standalone version and ide/vs05/openSmilePA.sln

for the version with PortAudio support (see below for patching and configuring the PortAudio
build files). Then, run SMILExtract.exe or SMILExtractPA.exe in the top-level directory of
the package.
The little longer version of the short build instructions:

Assuming that you have a correctly set up Visual Studio 2005 (or 2008) environment, you
can open the file ide/vs05/openSmile.sln, select the ‘Release’ configuration, and choose ‘Build
solution’ to build the standalone version of openSMILE for Windows. This will create the
command-line utility SMILExtract.exe in the top-level directory of the package, which you can
copy to your favourite path or call it directly.

Note for users of Visual Studio Express: Building with the Express versions is possible,
however not officially supported. You must install the Microsoft Windows Platform SDK for
the platform you are building on, and add/update the correct paths to the linker and include
paths of the openSmile projects. You might some additional effort to convert the Visual Studio
2005 project files and solutions to Express projects, which can be found on the Internet2.

For building with PortAudio support a few more steps are necessary to patch the PortAudio
build files. These steps are described in section 2.2.5.

2.2.2 Compiling on Linux/Mac

This section describes how to compile and install openSMILE on Unix-like systems step by step
(in case the build scripts mentioned in the previous section don’t work for you). You need to
have the following packages installed: autotools (i.e. automake, autoconf, libtool, and m4),
make, GNU C and C++ compiler gcc and g++. You will also want to install perl5 and gnuplot

in order to run the scripts for visualisation. Please refer to your distribution’s documentation
on how to install packages. You will also need root privileges to install new packages. We
recommend that you use the latest Ubuntu or Debian Linux, where packages can easily be
installed using the command sudo apt-get install package-name. Note: Please be aware
that the following instructions assume that you are working with the bash shell. If you use a
different shell, you might encounter some problems if your shell’s syntax differs from bash’s.

Start by unpacking the openSMILE package to a directory to which you have write access:

tar -zxvf openSMILE-1.0.0.tar.gz

Then change to the newly created directory:

cd openSMILE-0.1.0/

Next, run the following script twice (you may get errors the first time, this is ok):

bash autogen.sh

2At: http://jamesewelch.wordpress.com/2007/10/02/how-to-convert-a-visual-studio-2005-solution-to-visual-studio-2005-express/

http://jamesewelch.wordpress.com/2007/10/02/how-to-convert-a-visual-studio-2005-solution-to-visual-studio-2005-express/

2.2. COMPILING THE OPENSMILE SOURCE CODE 15

Important: You must run autogen.sh a second time in order to have all necessary files created!
If you do not do so, running make after configure will fail because Makefile.in is not found.
If you see warnings in the autogen.sh output you can probably ignore them, if you get errors
try to run autogen.sh a third time.

Note: if you cannot run ./autogen.sh then run it either as sh autogen.sh or change
the executable permission using the command chmod +x autogen.sh. If you get errors when
running this script the second time, your version of autotools might be outdated. Please check
that you have at least automake 1.10 and autoconf 2.61 installed (type autoconf --version

and automake --version to obtain the version number).
Now configure openSMILE with

./configure

to have it installed in the default location /usr or /usr/local (depends on your system), or use
the --prefix option to specify the installation directory (important: you need to use this, if
you don’t have root privileges on your machine):

./configure --prefix=/directory/prefix/to/install/to

Please make sure you have full write access to the directory you specify, otherwise the make

install command will fail.
On modern CPUs it is recommended to create an optimised executable for your CPU by

using the following compiler flags: -O2 -mfpmath=sse -march=native. You can pass those
flags directly to configure (you may or may not combine this with the --prefix option):

./configure CXXFLAGS=‘‘-O2 -mfpmath=sse -march=native’’ CFLAGS=‘‘-O2

-mfpmath=sse -march=native’’

The default setup will create a SMILExtract binary and a libopensmile.so shared library.
This is usually what you want, especially if you want to use plugins. However, in some cases
a portable binary, without library dependencies may be preferred. To create such a statically
linked binary pass the following option to the configure script:

./configure --enable-static --enable-shard=no

Warning: openSMILE plugins will not work with statically linked binaries.

After you have successfully configured openSMILE (i.e. if there were not error messages during
configuring - warning messages are fine), you are now ready to compile openSMILE with this
command:

make -j4 ; make

Note: make -j4 runs 4 compile processes in parallel. This speeds up the compilation process
on most machines (also single core). However, running only make -j4 will result in an error,
because libopensmile has not been built when SMILExtract is build. Thus, you need to run
a single make again. This should finish without error. If you have trouble with the -j4 option,
simply use make without options.

You are now ready to install openSMILE by typing:

make install

16 CHAPTER 2. USING OPENSMILE

You have to have root privileges to install openSMILE in a standard location (i.e. if you have
not specified an alternate path to configure). It is also possible to run openSMILE without
installation directly from the top-level directory of the openSMILE distribution (this should be
your current directory at the moment, if you have followed the above steps carefully). In this
case you have to prefix the executable with ./ i.e. you have to run ./SMILExtract instead of
SMILExtract.

Please note that make install currently only installs the openSMILE feature extractor
binary SMILExtract and the feature extractor’s library libopensmile.so. Configuration files
still remain in the build directory. Therefore, the examples in the following sections will assume
that all commands are entered in the top-level directory of the openSMILE distribution.

For splitting openSMILE into an executable and a dynamic library there have been primarily
two reasons:

Reusability of source-code and binaries. The openSMILE library contains the API com-
ponents with all the base classes and the standard set of components distributed with
openSMILE. Custom components, or project specific implementations can be linked di-
rectly into the SMILExtract executable. Thus, the library can be compiled without any
additional third-party dependencies and can be maintained and distributed independently,
while other projects using openSMILE can create a GUI frontend, for example, which de-
pends on various GUI libraries, or add components which interface with a middleware, as
in the SEMAINE project3.

Support for linking binary plugins at run-time. Since binary plugins depend on the openS-
MILE API and various base classes, instances of these base classes may be present only
once in the process memory during run-time. This can only be achieved by off-loading
these classes to a separate library.

Note: If you have installed openSMILE to a non-default path, you must set your library
path to include the newly installed libopensmile before running the SMILExtract binary (replace
/directory/prefix/to/install/to by the path you have passed to the --prefix option of
the configure script):

export LD LIBRARY PATH=/directory/prefix/to/install/to/lib

You will also need to add the path to the binary to your current PATH variable:

export PATH="$PATH:/directory/prefix/to/install/to/lib"

Attention: You need to do this every time you reboot, log-on or start a new shell. To
avoid this check your distribution’s documentation on how to add environment variables to your
shell’s configuration files. For the bash shell usually a file called .profile or .bashrc exists
in your home directory to which you can add the two export commands listed above. You can
also have a look at the script buildWithPortAudio.sh, which creates a wrapper shell script for
SMILExtract.

2.2.3 Compiling on Linux/Mac with PortAudio

To compile openSMILE with PortAudio support, the easiest way is to install the latest version
of PortAudio via your distribution’s package manager (be sure to install a development package,
which includes development header files). You can then run the same steps as in section 2.2.2,
the configure script should automatically detect your installation of PortAudio.

3See: http://www.semaine-project.eu/

http://www.semaine-project.eu/

2.2. COMPILING THE OPENSMILE SOURCE CODE 17

If you cannot install packages on your system or do not have access to a PortAudio package,
unpack the file thirdparty/portaudio.tgz in the thirdparty directory (thirdparty/portaudio).
Then read the PortAudio compilation instructions and compile and install PortAudio according
to these instructions. You can the continue with the steps listed in section 2.2.2. If you have
installed PortAudio to a non-standard location (by passing the --prefix option to PortAudio’s
configure), you have to pass the path to your PortAudio installation to openSMILE’s configure
script:

./configure --with-portaudio=/path/to/your/portaudio

After successfully configuring with PortAudio support, type make -j4; make; make install,
as described in the previous section.

Alternatively use the build script as described in section 2.2.1.

2.2.4 Compiling on Windows

For compiling openSMILE on Microsoft Windows (XP, Vista, and Windows 7) there are two
ways:

• Using Mingw32 and MSYS

• Using Visual Studio 2005 or 2008 (also Express)

The preferred way (and the only officially supported way) is to compile with Visual Studio 2005.
If you want to use Mingw32, please refer to http://www.mingw.org/wiki/msys for how to
correctly set up your Mingw32 and MSYS system with all necessary development tools (autoconf,
automake, libtool, and m4 as included in the MSYS DTK). You should then be able to follow
the Unix installation instructions in sections 2.2.2 and 2.2.3.

To compile with Microsoft Visual Studio several Visual Studio 2005 project files are provided
in the folder ide/vs05/. To build openSMILE you need to build two projects: the openSMILE
library and the executable of the command-line application. For the standalone version (with-
out PortAudio support, thus without live audio recording/playback) these projects would be
(in correct order) openSmileLib.vcproj and openSmile.vcproj (Note: please make sure the
‘Release’ configuration is selected when compiling, if you are not a developer). Both projects
are included in the solution file openSmile.sln. After successfully building both projects you
should have an openSmileLib.dll and a SMILExtract.exe in the top-level directory of the
source tree (NOT in the ide/vs2005/Release or Debug folder!). You can now copy these two
files to a directory in your path, e.g. C:\Windows\system32.

Note for users of Visual Studio Express: Building with the Express versions is possible,
however not officially supported. You must install the Microsoft Windows Platform SDK for
the platform you are building on, and add/update the correct paths to the linker and include
paths of the openSmile projects. You might some additional effort to convert the Visual Studio
2005 project files and solutions to Express projects, which can be found on the Internet4.

2.2.5 Compiling on Windows with PortAudio

A PortAudio snapshot known to work with openSMILE is provided in the thirdparty sub-
directory. Alternatively you can download the latest PortAudio SVN snapshot from http:

//www.portaudio.com/. It is a good idea (however not actually necessary) to read the PortAu-
dio compilation instructions for windows before compiling openSMILE .

4At: http://jamesewelch.wordpress.com/2007/10/02/how-to-convert-a-visual-studio-2005-solution-to-visual-studio-2005-express/

http://www.mingw.org/wiki/msys
http://www.portaudio.com/
http://www.portaudio.com/
http://jamesewelch.wordpress.com/2007/10/02/ how-to-convert-a-visual-studio-2005-solution-to-visual-studio-2005-express/

18 CHAPTER 2. USING OPENSMILE

Now, unpack the Windows PortAudio source tree to the thirdparty subdirectory of the
openSMILE distribution, which should create a directory called portaudio there. If you don’t
unpack PortAudio to this location, then you need to modify the Visual Studio Project files men-
tioned in the next paragraph and adjust the Include and Linker paths for PortAudio. By default
PortAudio will be built supporting all possible media APIs on a Windows system. However,
in most cases only the default Windows Media Extensions (WME) are available and absolutely
sufficient. Thus, we provide modified build files for PortAudio in the openSMILE package. To
use them (after unpacking PortAudio to the thirdparty/portaudio subdirectory), copy these
files from ide/vs05 to thirdparty/portaudio/build/msvc:

portaudio.vcproj, and portaudio.def.

The modified build files basically disable the DirectX, ASIO, and wasapi APIs. They add
PA NO DS and PA NO ASIO to the preprocessor defines (C/C++ settings tab, preprocessor) and
disable all the .cpp files in the related hostapi project folders. Moreover, the output path is ad-
justed to the top-level directory and the filename of the output dll is set to portaudio x86.dll.

Now, to compile openSMILE with PortAudio support, you need to compile the follow-
ing three projects: portaudio/build/msvc/portaudio.vcproj, openSmileLibPA.vcproj and
openSmilePA.vcproj. You can load and build all three projects via the solution file openSmilePA.sln,
i.e. in most cases it should be sufficient to open openSmilePA.sln, select the ‘Release’ config-
uration (Visual Studio tends to default to ‘Debug’ for some reason), and choose ‘Build so-
lution’ from the ‘Build’ menu. After successfully building both projects you should have an
openSmileLibPA.dll and a SMILExtractPA.exe in the top-level directory of the source tree
(NOT in the ide/vs2005/Release or Debug folder!). Also make sure, that the PortAudio dll
file is either in your search path or in the same directory as SMILExtractPA.exe (the openS-
MILE top-level directory by default). This should be the case, if you use the patched PortAudio
projects provided in ide/vs05. If you are using the unpatched, original PortAudio build files,
the PortAudio dll can be found in the directory portaudio/build/msvc/Win32/Release.

Please note: the PortAudio versions of the openSMILE Visual Studio projects assume that
the dll is called portaudio x86.dll and the import library portaudio x86.lib and both are
found in the top-level directory of the openSMILE build tree. This name, however, might be
different, depending on your architecture. Thus, you should check this and change the name of
the import library in the Linker, advanced settings tab.

2.3 Extracting your first features

Now, that you have either successfully downloaded and installed the binary version of openS-
MILE or have compiled the source code yourself, you are ready to test the program and extract
your first features. To check if you can run SMILExtract, type:

SMILExtract -h

If you see the usage information and version number of openSMILE , then everything is set up
correctly. You will see some lines starting with (MSG) at the end of the output, which you can
safely ignore. To check if your SMILExtract binary supports live audio recording and playback,
type:

SMILExtract -H cPortaudio

If you see various configuration option of the cPortaudio components, then your binary supports
live audio I/O. If you see only three lines with messages, then you do not have live audio support.

2.3. EXTRACTING YOUR FIRST FEATURES 19

Please note: You may have to prefix a “./” on Unix like systems, if SMILExtract is not in
your path but in the current directory instead.

Now we will start using SMILExtract to extract very simple audio features from a wave
file. You can use your own wave files if you like, or use the files provided in the wav-samples

directory.
For a quick start, we will use an example configuration file provided with the openSMILE

distribution. Type the following command in the top-level directory of the openSMILE package
(if you start openSMILE in a different directory you must adjust the paths to the config file and
the wave file):

SMILExtract −C c o n f i g /demo/demo1\ energy . conf −I wav\ samples / speech01 .
wav −O speech01 . energy . csv

If you get only (MSG) and (WARN) type messages, and you see Processing finished! in the
last output line, then openSMILE ran successfully. If something fails, you will get an (ERROR)

message.

Note for windows users: Due to faulty exception handling, if an exception indi-
cating an error is thrown in the DLL and caught in the main executable, Windows
will display a program crash dialogue. In most cases openSMILE will have displayed
the error message beforehand, so can just close the dialogue. In some cases however,
Windows kills the program before it can display the error message. If this is the case,
please use Linux, or contact the authors and provide some details on your problem.

Now, if openSMILE ran successfully, open the file speech01.energy.csv in a text editor to see
the result. You can also plot the result graphically using gnuplot. This is discussed in section 2.7.

Next, we will generate the configuration file from the above simple example ourselves, to
learn how openSMILE configuration files are written. openSMILE can generate configuration
file templates for simple scenarios. We will use this function to generate our first configuration
file, which will be capable of reading a wave file, compute frame energy, and saving the output
to a CSV file. First, create a directory myconfig which will hold your configuration files. Now
type the following (without newlines) to generate the first configuration file:

SMILExtract −c fgFi l eTemplate −c o n f i g D f l t cWaveSource , cFramer , cEnergy ,
cCsvSink − l 1 2> myconfig /demo1 . conf

The -cfgFileTemplate option instructs openSMILE to generate a configuration file template,
while the -configDflt option is used to specify a comma separated list of components which
shall be part of the generated configuration. The -l 1 option sets the log-level to one, to
suppress any messages, which should not be in the configuration file (you will still get ERROR
messages on log-level one, e.g. messages informing you that components you have specified do
not exist, etc.). The template text is printed to standard error, thus we use 2> to dump it to
the file myconfig/demo1.conf. If you want to add comments describing the individual option
lines in the generated configuration file, add the option -cfgFileDescriptions to the above
command-line.

The newly generated file consists of two logical parts. The first part looks like this (please
note, that comments in the examples are started by ; or // and may only start at the beginning
of a line):

;= component manager c o n f i g u r a t i o n (= l i s t o f enabled components !) =

[componentInstances : cComponentManager]
// t h i s l i n e c o n f i g u r e s the d e f a u l t data memory :

i n s t anc e [dataMemory] . type = cDataMemory

20 CHAPTER 2. USING OPENSMILE

i n s t anc e [waveSource] . type = cWaveSource
i n s t anc e [framer] . type = cFramer
in s t anc e [energy] . type = cEnergy
in s t anc e [csvSink] . type = cCsvSink
// Here you can c o n t r o l the amount o f d e t a i l d i sp l ayed f o r the
// data memory l e v e l c o n f i g u r a t i o n . 0 i s no in fo rmat ion at a l l ,
// 5 i s maximum d e t a i l .
p r i n t L e v e l S t a t s = 1
// You can s e t the number o f p a r a l l e l threads (exper imenta l) :

nThreads = 1

It contains the configuration of the component manager, which determines what components
are instantiated when you call SMILExtract. There always has to be one cDataMemory compo-
nent, followed by other components. The name given in [] specifies the name of the component
instance, which must be unique within one configuration.

The next part contains the component configuration sections, where each begins with a
section header:

[waveSource : cWaveSource]
. . .
[f ramer : cFramer]
. . .
[energy : cEnergy]
. . .
[c svSink : cCsvSink]
. . .

The section header follows this format: [instanceName:componentType]. The template com-
ponent configuration sections are generated with all available values set to their default values.
This functionality currently is still experimental, because some values might override other val-
ues, or have a different meaning if explicitly specified. Thus, you should carefully check all the
available options, and list only those in the configuration file which you require. Even if in
some cases you might use the default values (such as the number of spectral bands, etc.) it is
considered good practice to include these in the configuration file. This will ensure compatibility
with future versions, in case the defaults - for whatever reason - might change. Moreover, it will
increase the readability of your configuration files because all parameters can be viewed in one
place without looking up the defaults in this manual.

Next, you have to configure the component connections. This can be done by assigning so
called data memory “levels” to the dataReader and dataWriter components which are always
contained in each source, sink, or processing component by modifying the reader.dmLevel

and writer.dmLevel lines. You can choose arbitrary names for the writer levels here, since
the dataWriters register and create the level you specify as writer.dmLevel in the data mem-
ory. You then connect the components by assigning the desired read level to reader.dmLevel.
Thereby the following rules apply: for one level only one writer may exist, i.e. only one com-
ponent can write to a level; however, there is no limit to the number of components that read
from a level, and one component can read from more than one level if you specify multiple level
names separated by a ;, such as reader.dmLevel = energy;loudness to read data from the
levels energy and loudness. Data is thereby concatenated column wise.

For our example configuration we want the cFramer component to read from the input PCM
stream, which is provided by the cWaveSource component, create frames of 25 ms length every
10 ms and write these frames to a new level we call “energy”), thus we change the following
lines:

2.3. EXTRACTING YOUR FIRST FEATURES 21

[waveSource : cWaveSource]
w r i t e r . dmLevel = <<XXXX>>

to

[waveSource : cWaveSource]
w r i t e r . dmLevel = wave

and the framer section

[f ramer : cFramer]
r eader . dmLevel = <<XXXX>>
w r i t e r . dmLevel = <<XXXX>>
. . .

to (note, that we removed a few superfluous frameSize* options and changed frameStep to 0.010):

[f ramer : cFramer]
r eader . dmLevel = wave
w r i t e r . dmLevel = waveframes
copyInputName = 1
frameMode = f i x e d
f rameSize = 0.025000
frameStep = 0.010000
f rameCenterSpec ia l = l e f t
noPostEOIprocess ing = 1

Next, the cEnergy component shall read the audio frames and compute the signal log energy,
and the cCsvSink shall write them to a CSV format file. Thus, we change the corresponding
lines to:

[energy : cEnergy]
reader . dmLevel = waveframes
w r i t e r . dmLevel = energy
. . .
rms = 0
log = 1
. . .
[csvSink : cCsvSink]
reader . dmLevel = energy
f i l ename = myenergy . csv
. . .

We are now ready to run SMILExtract with our own configuration file:

SMILExtract -C myconfig/demo1.conf

This will open the file “input.wav” in the current directory (be sure to copy a suitable wave file
and rename it to “input.wav”), do the feature extraction, and save the result to “myenergy.csv”.
The result should be the same as with the example configuration file.

If you want to be able to pass the input file name and the output file name on the SMILEx-
tract command-line, you have to add a command to the configuration file to define a custom
command-line option. To do this, change the filename lines of the wave source and the csv sink
to:

[waveSource : cWaveSource]
. . .
f i l ename = \cm[i n p u t f i l e (I) : f i l e name o f the input wave f i l e]
. . .

22 CHAPTER 2. USING OPENSMILE

[c svSink : cCsvSink]
. . .
f i l ename = \cm[o u t p u t f i l e (O) : f i l e name o f the output CSV f i l e]
. . .

You can now run:

SMILExtract −C myconfig /demo1 . conf −I wav\ samples / speech01 . wav −O
speech01 . energy . csv

This concludes the introductory section. We hope that you now understand the basics of how
to use and configure openSMILE , and are ready to take a look at the more complex examples,
which are explained in section 2.5. To explore the full potential of openSMILE configuration
files, please read section 3.2, which provides description of the format, and section 3.3, which
describes the function and configuration options of all components in detail. If you are interested
what is going on inside openSMILE, which components exist besides those which are instantiable
and connectable via the configuration files, and to learn more about the terminology used, then
you should read section 2.4 which describes the program architecture in detail.

2.4 What is going on inside of openSMILE

The SMILExtract binary is the main application which can run all configuration files. If you
take a look at the source code of it (which is found in SMILExtract.cpp), you will see that
it is fairly short. It uses the classes from the openSMILE API to create the components and
run the configurations. These API functions can be used in custom applications, such as GUI
front-ends etc. Therefore, they will be described in more detail in the developer’s documentation
in section 4. However, to obtain a general understanding what components make openSMILE
run, how they interact, and in what phases the program execution is split, a brief overview is
given in this section.
openSMILE’s application flow can be split into three general phases:

Pre-config phase Command-line options are read and the configuration file is parsed. Also,
usage information is displayed, if requested, and a list of built-in components is generated.

Configuration phase The component manager is created and instantiates all components
listed in its instances configuration array. The configuration process is then split into 3
phases, where components first register with the component manager and the data memory,
then perform the main configuration steps such as opening of input/output files, allocation
of memory, etc., and finally finalise their configuration (e.g. set the names and dimensions
of their output fields, etc.). Each of the 3 phases is passed through several times, since
some components may depend on other components having finished their configuration
(e.g. components that read the output from another component and need to know the
dimensionality of the output and the names of the fields in the output). Errors, due to
mis-configurations, bogus input values, or inaccessible files, are likely to happen during
this phase.

Execution phase When all components have been initialised successfully, the component man-
ager starts the main execution loop (also referred to as tick-loop). Every component has
a tick() method, which implements the main incremental processing functionality and
reports on the status of the processing via its return value.

In one iteration of the execution loop, the component manager calls all tick() functions
in series (Note: the behaviour is different, when components are run in multiple threads).

2.4. WHAT IS GOING ON INSIDE OF OPENSMILE 23

The loop is continued as long as at least one component’s tick() method returns a non-zero
value (which indicates that data was processed by this component).

If all components indicate that they did not process data, it can be safely assumed that
no more data will arrive and the end of the input has been reached (this may be slightly
different for on-line settings, however, it is up to the source components to return a positive
return value or pause the execution loop, while they are waiting for data).

When the end of the input is reached, the component manager signals the end-of-input
condition to the components by running one final iteration of the execution loop. After
that the execution loop will be ran a new, until all components report a failure status. This
second phase is referred to end-of-input processing. It is mainly used for off-line processing,
e.g. to compute features from the last (but incomplete) frames, to mean normalise a
complete sequence, or to compute functionals from a complete sequence.

openSMILE contains three classes which cannot be instantiated from the configuration files.
These are the commandline parser (cCommandlineParser), the configuration manager (cConfig-
Manager), and the component manager (cComponentManager). We will now briefly describe
the role of each of these in a short paragraph. The order of the paragraph corresponds to the
order the classes are created during execution of the SMILExtract program.

The commandline parser This class parses the command-line and provides options in an
easily accessible format to the calling application. Simple command-line syntax checks are also
performed. After the configuration manager has been initialised and the configuration has been
parsed, the command-line is parsed a second time, to also get the user-defined command-line
options set in the current configuration file.

The configuration manager The configuration manager loads the configuration file, which
was specified on the SMILExtract command-line. Thereby, configuration sections are split and
then parsed individually. The configuration sections are stored in an abstract representation as
ConfigInstance classes (the structure of these classes is described by a ConfigType class). Thus,
it is easy to add additional parsers for formats other than the currently implemented ini-style
format.

The component manager The component manager is responsible of instantiating, configur-
ing, and executing the components. The details have already been described in the above section
on openSMILE’s application flow. Moreover, the component manger is responsible of enumer-
ating and registering components in plugins. Therefore, a directory called plugins is scanned
for binary plugins. The plugins found are registered, an become useable exactly in the same
way as built-in components. A single plugin binary thereby can contain multiple openSMILE
components.

The components instantiated by the component manager are all descendants of the cSmile-
Component class. They have two basic means of standardised communication: a) directly and
asynchronously, via smile messages, and b) indirectly and synchronously via the data memory.

Method a) is used to send out-of-line data, such as events and configuration changes directly
from one smile component to another. Classifier components, for example, send a ‘classification-
Result’ message, which can be caught by other components (esp. custom plug-ins), to change
their behaviour or send the message to external sources.

Method b) is the standard method for handling of data in openSMILE. The basic principle
is that of a data source producing a frame of data and writing it to the data memory. A data

24 CHAPTER 2. USING OPENSMILE

processor reads this frame, applies some fancy algorithm to it, and writes a modified output
frame back to a different location in the data memory. This step can be repeated for multiple
data processors. Finally, a data sink reads the frame and passes it to an external source or
interprets (classifies) it in some way. The advantage of passing data indirectly is that multiple
components can read the same data, and data from past frames can stored efficiently in a central
location for later use.

2.4.1 Incremental processing

D a t a M e m o r y

D a t a S o u r c e
(e . g . s o u n d c a r d)

D a t a S i n k
(e . g . L i b S V M c l a s s i f i e r)

D a t a S i n k
(e . g . C S V f i l e e x p o r t)

D a t a P r o c e s s o r
(e . g . w i n d o w i n g)

D a t a P r o c e s s o r
(e . g . F F T)

D a t a P r o c e s s o r
(e . g . M e l - F i l t e r b a n k)

. . .

:
:

D a t a P r o c e s s o r
(e . g . F u n c t i o n a l s)

D a t a P r o c e s s o r
(e . g . D e l t a C o e f f i c i e n t s)

:
:

Figure 2.1: Overview on openSMILE’s component types and openSMILE’s basic architecture.

The data-flow in openSMILE is handled by the cDataMemory component. This component
manages multiple data memory ‘levels’ internally. These levels are independent data storage
locations, which can be written to by exactly one component and read by an arbitrary number
of components. From the outside (the component side) the levels appear to be a Nx∞ matrix,
with N rows, whereby N is the frame size. Components can read / write frames (=columns) at
/ to any location in this virtual matrix. If this matrix is internally represented by a ring-buffer,
a write operation only succeeds if there are empty frames in the buffer (frames that have not
been written to, or frames that have been read by all components reading from the level), and
a read operation only succeeds if the referred frame index lies no more than the ring buffer size
in the past. The matrices can also be internally represented by a non-ring buffer of fixed size
(nT=size, growDyn=0, isRb=0), or variable size (nT=initial size, growDyn=1, isRb=0). In the
case of the variable size a write will always succeed, except when there is no memory left; for a
fixed frame size a write will succeed until the buffer is full, after that the write will always fail.
For fixed buffers, reads from 0 to the current write position will succeed.

Figure 2.1 shows the overall data-flow architecture of openSMILE, where the data memory
is the central link between all dataSource, dataProcessor, and dataSink components.

The ring-buffer based incremental processing is illustrated in figure 2.2. Three levels are
present in this setup: wave, frames, and pitch. A cWaveSource component writes samples to the

2.4. WHAT IS GOING ON INSIDE OF OPENSMILE 25

D <wave>

<frames>
Sample 0

0 1 2 3 4 5 6 7 ...

 Frame 1 Frame 2 Frame 3 ...

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

F0 Frame 1

 Frame 1 Frame 2 ...

HNR Frame 1

<pitch>

cFramer (=cWinToVecProcessor)

cPitch (=cVectorProcessor)

cWaveSource (=cDataSource) <Datamemory
Level>:

cArffSink (=cDataSink)

cLibsvmliveSink (=cDataSink)

D <wave>

<frames>
Sample 12

12 13 14 15 4 5 6 7 9, 10, 11

 Frame 5 Frame 2 Frame 3 Frame 4

Sample 13

Sample 14

Sample 3

Sample 4

Sample 5

F0 Frame 5

 Frame 5 Frame 2 Frame 3 Frame 4

HNR Frame 5

<pitch>

cFramer (=cWinToVecProcessor)

cPitch (=cVectorProcessor)

cWaveSource (=cDataSource)

cArffSink (=cDataSink)

cLibsvmliveSink (=cDataSink)

8

F0 Frame 2 F0 Frame 3 F0 Frame 4

Sample 6

Sample 7

Sample 8

Sample 9

Sample 10

Sample 11

HNR Frame 2 HNR Frame 3 HNR Frame 4

<Datamemory
Level>:

 Frame 3

Figure 2.2: Incremental processing with ring-buffers. Partially filled buffers (left) and filled
buffers with warped read/write pointers (right).

‘wave’ level. The write positions in the levels are indicated by a red arrow. A cFramer produces
frames of size 3 from the wave samples (non-overlapping), and writes these frames to the ‘frames’
level. A cPitch (a component with this name does not exist, it has been chosen here only for
illustration purposes) component extracts pitch features from the frames and writes them to the
‘pitch’ level. In figure 2.2 (right) the buffers have been filled, and the write pointers have been
warped. Data that lies more than ‘buffersize’ frames in the past has been overwritten.

F0 Frame 5

 Frame 1 Frame 2 Frame 3 Frame 4

HNR Frame 5

<pitch>

cPitch (=cVectorProcessor)

cWaveSource (=cDataSource) <Datamemory
Level>:

cArffSink (=cDataSink)

cLibsvmliveSink (=cDataSink)

F0 Frame 2 F0 Frame 3 F0 Frame 4

HNR Frame 2 HNR Frame 3 HNR Frame 4

Max F0

 Funct. 1 Funct. 2 ...

Min F0

...

Max F0

Min F0

Max HNR

Min HNR

Max HNR

Min HNR

cFunctionals

<func>

Figure 2.3: Incremental computation of high-level features such as statistical functionals.

Figure 2.3 shows the incremental processing of higher order features. Functionals (max and
min) over two frames (overlapping) of the pitch features are extracted and saved to the level
‘func’.

The size of the buffers must be set correctly to ensure smooth processing for all blocksizes. A
‘blocksize’ thereby is the size of the block a reader or writer reads/writes from/to the dataMem-
ory at once. In the above example the read blocksize of the functionals component would be 2
because it reads two pitch frames at once. The input level buffer of ‘pitch’ must be at least 2

26 CHAPTER 2. USING OPENSMILE

frames long, otherwise the functionals component will never be able to read a complete window
from this level.

openSMILE handles automatic adjustment of the buffersizes. Therefore, readers and writers
must register with the data memory during the configuration phase and publish their read and
write blocksizes. The minimal buffersize is computed based on these values. If the buffersize of
a level is set smaller than the minimal size, the size will be increased to the minimum possible
size. If the specified size (via configuration options) is larger than the minimal size, the larger
size will be used. Note: this automatic buffersize setting only applies to ring-buffers. If you use
non-ring buffers, or if you want to process the full input (e.g. for functionals of the complete
input, or mean normalisation) it is always recommended to configure a dynamically growing
non-ring buffer level (see the cDataWriter configuration for details, section 3.3.2).

2.4.2 Smile messages

This section has yet to be written. In the meantime, please refer to the file doc/developer/messages.txt
for a minimal documentation of currently available smile messages. See also the smileComponent.hpp
source file, which contains the structural definitions of smile messages.

2.4.3 openSMILE terminology

In the context of the openSMILE data memory various terms are used which require clarification
and a precise definition, such as ‘field’, ‘element’, ‘frame’, and ‘window’.

You have learnt about the internal structure of the dataMemory in section 2.4.1. Thereby a
level in the data memory represents a unit which contains numeric data, frame meta data, and
temporal meta data. Temporal meta data is present on the one hand for each frame, thereby
describing frame timestamps and custom per frame meta information, and on the other hand
globally, describing the global frame period and timing mode of the level.

If we view the numeric contents of the data memory level as a 2D <nFields x nTimestemps>
matrix, ‘frames’ correspond to the columns of this matrix, and ‘windows’ or ‘contours’ correspond
the rows of this matrix. The frames are also referred to as (column-)‘vectors’ in some places.
(Note: when exporting data to files, the data – viewed as matrix – is transposed, i.e. for text-
based files (CSV, ARFF), the rows of the file correspond to the frames.) The term ‘elements’
– as used in openSMILE – refers to the actual elements of the frames/vectors. The term ‘field’
refers to a group of elements that belongs together logically and where all elements have the
same name. This principle shall be illustrated by an example: A feature frame containing the
features ‘energy’, ‘F0’, and MFCC 1-6, will have 1 + 1 + 6 = 8 elements, but only 3 fields: the
field ‘energy’ with a single element, the field ‘F0’ with a single element, and the (array-) field
‘MFCC’ with 6 elements (called ‘MFCC[0]’ – ‘MFCC[1]’).

2.5 Default feature sets

For common tasks from the Music Information Retrieval and Speech Processing fields we provide
some example configuration files in the config/ directory for the following frequently used
feature sets:

• Chroma features for key and chord recognition

• MFCC for speech recognition

• PLP for speech recognition

2.5. DEFAULT FEATURE SETS 27

• Prosody (Pitch and loudness)

• The INTERSPEECH 2009 Emotion Challenge feature set

• The INTERSPEECH 2010 Paralinguistic Challenge feature set

• Three reference sets of features for emotion recognition

These configuration files can be used as they are, or as a basis for your own feature files.

Note: If you publish results with features extracted by openSMILE, we would
appreciate it if you share your configuration files with the research community, by
uploading them to your personal web-pages and providing the URL in the paper, for
example.

2.5.1 Chroma features

The configuration file config/chroma fft.conf computes musical Chroma features (for 12 semi-
tones) from a short-time FFT spectrogram (window-size 50 ms, rate 10 ms, Gauss-window). The
spectrogram is scaled to a semi-tone frequency axis scaling using triangular filters. To use this
configuration, type:

SMILExtract −C c o n f i g /chroma\ f f t . conf −I input . wav −O chroma . csv

The resulting CSV file contains the Chroma features as ascii float values separated by ‘;’, one
frame per line. This configuration uses the ‘cTonespec’ (section 3.3.6) component to compute
the semitone spectrum. We also provide a configuration using the experimental ‘cTonefilt’
(section 3.3.6) as a replacement for ‘cTonespec’ in the file config/chroma filt.conf.

We also provide an example configuration for computing a single vector which contains
the mean value of the Chroma features computed over the complete input sequence. Such a
vector can be used for recognising the musical key of a song. The configuration is provided in
config/chroma fft.sum.conf. It uses the ‘cFunctionals’ component (section 3.3.7) to compute
the mean values of the Chroma contours. Use it with the following command-line:

SMILExtract −C c o n f i g /chroma\ f f t . sum . conf −I input . wav −O chroma . csv

chroma.csv will contain a single line with 12 values separated by ‘;’, representing the mean
Chroma values.

2.5.2 MFCC features

For extracting MFCC features (HTK compatible) the following four files are provided (they are
named after the corresponding HTK parameter kinds they represent):

MFCC12 0 D A.conf This configuration extracts Mel-frequency Cepstral Coefficients from
25 ms audio frames (sampled at a rate of 10 ms) (Hamming window). It computes 13
MFCC (0-12) from 26 Mel-frequency bands, and applies a cepstral liftering filter with a
weight parameter of 22. 13 delta and 13 acceleration coefficients are appended to the
MFCC.

MFCC12 E D A.conf This configuration is the same as MFCC12 0 D A.conf, except that
the log-energy is appended to the MFCC 1-12 instead of the 0-th MFCC.

MFCC12 0 D A Z.conf This configuration is the same as MFCC12 0 D A.conf, except that
the features are mean normalised with respect to the full input sequence (usually a turn
or sub-turn segment).

28 CHAPTER 2. USING OPENSMILE

MFCC12 E D A Z.conf This configuration is the same as MFCC12 E D A.conf, except that
the features are mean normalised with respect to the full input sequence (usually a turn
or sub-turn segment).

The frame size is set to 25 ms at a rate of 10 ms. A Hamming function is used to window the
frames and a pre-emphasis with k = 0.97 is applied. The MFCC 0/1-12 are computed from 26
Mel-bands computed from the FFT power spectrum. The frequency range of the Mel-spectrum
is set from 0 to 8 kHz. These configuration files provide the -I and -O options. The output file
format is the HTK parameter file format. For other file formats you must change the ‘cHtkSink’
component type in the configuration file to the type you want. An example command-line is
given here:

SMILExtract −C c o n f i g /MFCC12\ E\ D\ A . conf −I input . wav −O output . mfcc .
htk

2.5.3 PLP features

For extracting PLP cepstral coefficients (PLP-CC) (HTK compatible) the following four files
are provided (they are named after the corresponding HTK parameter kinds they represent):

PLP 0 D A.conf This configuration extracts Mel-frequency Cepstral Coefficients from 25 ms
audio frames (sampled at a rate of 10 ms) (Hamming window). It computes 6 PLP (0-5)
from 26 Mel-frequency bands using a predictor order of 5, and applies a cepstral liftering
filter with a weight parameter of 22. 6 delta and 6 acceleration coefficients are appended
to the PLP-CC.

PLP E D A.conf This configuration is the same as PLP 0 D A.conf, except that the log-
energy is appended to the PLP 1-5 instead of the 0-th PLP.

PLP 0 D A Z.conf This configuration is the same as PLP 0 D A.conf, except that the fea-
tures are mean normalised with respect to the full input sequence (usually a turn or
sub-turn segment).

PLP E D A Z.conf This configuration is the same as PLP E D A.conf, except that the fea-
tures are mean normalised with respect to the full input sequence (usually a turn or
sub-turn segment).

The frame size is set to 25 ms at a rate of 10 ms. A Hamming function is used to window
the frames and a pre-emphasis with k = 0.97 is applied. The PLP 0/1-5 are computed from 26
auditory Mel-bands (compression factor 0.33) computed from the FFT power spectrum. The
predictor order of the linear predictor is 5. The frequency range of the Mel-spectrum is set from
0 to 8 kHz. These configuration files provide the -I and -O options. The output file format is the
HTK parameter file format. For other file formats you must change the ‘cHtkSink’ component
type in the configuration file to the type you want. An example command-line is given here:

SMILExtract −C c o n f i g /PLP\ E\ D\ A . conf −I input . wav −O output . plp . htk

2.5.4 Prosodic features

Example configuration files for extracting prosodic features are provided in the files

config/prosodyAcf.conf, and config/prosodyShs.conf.

2.5. DEFAULT FEATURE SETS 29

These files extract the fundamental frequency (F0), the voicing probability, and the loudness
contours. The file prosodyAcf.conf uses the ‘cPitchACF’ component (section 3.3.6) to ex-
tract the fundamental frequency via an autocorrelation and cepstrum based method. The file
prosodyShs.conf uses the ‘cPitchShs’ component (section 3.3.6) to extract the fundamental
frequency via the sub-harmonic sampling algorithm (SHS). Both configurations set the CSV
format as output format. An example command-line is given here:

SMILExtract −C c o n f i g / prosodyShs . conf −I input . wav −O prosody . csv

2.5.5 Extracting features for emotion recognition

Since openSMILE is used by the openEAR project [EWS09] for emotion recognition, various
standard feature sets for emotion recognition are available as openSMILE configuration files.

The INTERSPEECH 2009 Emotion Challenge feature set The INTERSPEECH 2009
Emotion Challenge feature set (see [SSB09]) is represented by the configuration file config/emo IS09.conf.
It contains 384 features as statistical functionals applied to low-level descriptor contours. The
features are saved in Arff format (for WEKA), whereby new instances are appended to an ex-
isting file (this is used for batch processing, where openSMILE is repeatedly called to extract
features from multiple files to a single feature file). The names of the 16 low-level descriptors,
as they appear in the Arff file, are documented in the following list:

pcm RMSenergy Root-mean-square signal frame energy

mfcc Mel-Frequency cepstral coefficients 1-12

pcm zcr Zero-crossing rate of time signal (frame-based)

voiceProb The voicing probability computed from the ACF.

F0 The fundamental frequency computed from the Cepstrum.

The suffix sma appended to the names of the low-level descriptors indicates that they were
smoothed by a moving average filter with window length 3. The suffix de appended to sma suf-
fix indicates that the current feature is a 1st order delta coefficient (differential) of the smoothed
low-level descriptor. The names of the 12 functionals, as they appear in the Arff file, are docu-
mented in the following list:

max The maximum value of the contour

min The minimum value of the contour

range = max-min

maxPos The absolute position of the maximum value (in frames)

minPos The absolute position of the minimum value (in frames)

amean The arithmetic mean of the contour

linregc1 The slope (m) of a linear approximation of the contour

linregc2 The offset (t) of a linear approximation of the contour

linregerrQ The quadratic error computed as the difference of the linear approximation and
the actual contour

30 CHAPTER 2. USING OPENSMILE

stddev The standard deviation of the values in the contour

skewness The skewness (3rd order moment).

kurtosis The kurtosis (4th order moment).

The INTERSPEECH 2010 Paralinguistic Challenge feature set The INTERSPEECH
2010 Paralinguistic Challenge feature set (see Proceedings of INTERSPEECH 2010, to appear)
is represented by the configuration file config/paraling IS10.conf. The set contains 1 582
features which result from a base of 34 low-level descriptors (LLD) with 34 corresponding delta
coefficients appended, and 21 functionals applied to each of these 68 LLD contours (1 428 fea-
tures). In addition, 19 functionals are applied to the 4 pitch-based LLD and their four delta
coefficient contours (152 features). Finally the number of pitch onsets (pseudo syllables) and
the total duration of the input are appended (2 features).

The features are saved in Arff format (for WEKA), whereby new instances are appended
to an existing file (this is used for batch processing, where openSMILE is repeatedly called
to extract features from multiple files to a single feature file). The names of the 34 low-level
descriptors, as they appear in the Arff file, are documented in the following list:

pcm loudness The loudness as the normalised intensity raised to a power of 0.3.

mfcc Mel-Frequency cepstral coefficients 0-14

logMelFreqBand logarithmic power of Mel-frequency bands 0 - 7 (distributed over a range
from 0 to 8 kHz)

lspFreq The 8 line spectral pair frequencies computed from 8 LPC coefficients.

F0finEnv The envelope of the smoothed fundamental frequency contour.

voicingFinalUnclipped The voicing probability of the final fundamental frequency candidate.
Unclipped means, that it was not set to zero when is falls below the voicing threshold.

The suffix sma appended to the names of the low-level descriptors indicates that they were
smoothed by a moving average filter with window length 3. The suffix de appended to sma suf-
fix indicates that the current feature is a 1st order delta coefficient (differential) of the smoothed
low-level descriptor. The names of the 21 functionals, as they appear in the Arff file, are docu-
mented in the following list:

maxPos The absolute position of the maximum value (in frames)

minPos The absolute position of the minimum value (in frames)

amean The arithmetic mean of the contour

linregc1 The slope (m) of a linear approximation of the contour

linregc2 The offset (t) of a linear approximation of the contour

linregerrA The linear error computed as the difference of the linear approximation and the
actual contour

linregerrQ The quadratic error computed as the difference of the linear approximation and
the actual contour

2.5. DEFAULT FEATURE SETS 31

stddev The standard deviation of the values in the contour

skewness The skewness (3rd order moment).

kurtosis The kurtosis (4th order moment).

quartile1 The first quartile (25% percentile)

quartile2 The first quartile (50% percentile)

quartile3 The first quartile (75% percentile)

iqr1-2 The inter-quartile range: quartile2-quartile1

iqr2-3 The inter-quartile range: quartile3-quartile2

iqr1-3 The inter-quartile range: quartile3-quartile1

percentile1.0 The outlier-robust minimum value of the contour, represented by the 1% per-
centile.

percentile99.0 The outlier-robust maximum value of the contour, represented by the 99%
percentile.

pctlrange0-1 The outlier robust signal range ‘max-min’ represented by the range of the 1%
and the 99% percentile.

upleveltime75 The percentage of time the signal is above (75% * range + min).

upleveltime90 The percentage of time the signal is above (90% * range + min).

The four pitch related LLD (and corresponding delta coefficients) are as follows (all are 0
for unvoiced regions, thus functionals are only applied to voiced regions of these contours):

F0final The smoothed fundamental frequency contour

jitterLocal The local (frame-to-frame) Jitter (pitch period length deviations)

jitterDDP The differential frame-to-frame Jitter (the ‘Jitter of the Jitter’)

shimmerLocal The local (frame-to-frame) Shimmer (amplitude deviations between pitch pe-
riods)

19 functionals are applied to these 4+4 LLD, i.e. the set of 21 functionals mentioned above
without the minimum value (the 1% percentile) and the range.

The openSMILE/openEAR ‘emobase’ set The old baseline set (see the ‘emobase2’ set
for the new baseline set) of 988 acoustic features for emotion recognition can be extracted using
the following command:

SMILExtract -C config/emobase.conf -I input.wav -O output.arff

This will produce an ARFF file with a header containing all the feature names and one instance,
containing a feature vector for the given input file. To append more instances to the same ARFF
file, simply run the above command again for different (or the same) input files. The ARFF
file will have a dummy class label called emotion, containing one class unknown by default. To
change this behaviour and assign custom classes and class labels to an individual instance, use
a command-line like the following:

32 CHAPTER 2. USING OPENSMILE

SMILExtract -C config/emobase.conf -I inputN.wav -O output.arff -instname

inputN -classes {anger,fear,disgust} -classlabel anger

Thereby the parameter -classes specifies the list of nominal classes including the {} characters,
or can be set to numeric for a numeric (regression) class. The parameter -classlabel specifies
the class label/value of the instance computed from the currently given input (-I). For further
information on these parameters, please take a look at the configuration file emobase.conf where
these command-line parameters are defined.

The feature set specified by emobase.conf contains the following low-level descriptors (LLD):
Intensity, Loudness, 12 MFCC, Pitch (F0), Probability of voicing, F0 envelope, 8 LSF (Line
Spectral Frequencies), Zero-Crossing Rate. Delta regression coefficients are computed from
these LLD, and the following functionals are applied to the LLD and the delta coefficients:
Max./Min. value and respective relative position within input, range, arithmetic mean, 2 linear
regression coefficients and linear and quadratic error, standard deviation, skewness, kurtosis,
quartile 1–3, and 3 inter-quartile ranges.

The large openSMILE emotion feature set For extracting a larger feature set with more
functionals and more LLD enabled (total 6 552 features), use the configuration file

config/emo large.conf.

Please read the configuration file and the header of the generated arff file in conjunction with
the matching parts in the component reference section (3.3) for details on the contained feature
set. A documentation has to be yet written, volunteers are welcome!

The openSMILE ‘emobase2010’ reference set This feature set is based on the INTER-
SPEECH 2010 Paralinguistic Challenge feature set. It is represented by the file

config/emobase2010.conf.

A few tweaks have been made regarding the normalisation of duration and positional features.
This feature set contains a greatly enhanced set of low-level descriptors, as well as a carefully
selected list of functionals compared to the older ‘emobase’ set. This feature set is recommended
as a reference for comparing new emotion recognition feature sets and approaches to, since it
represents a current state-of-the-art feature set for affect and paralinguistic recognition.

The set contains 1 582 features (same as the INTERSPEECH 2010 Paralinguistic Challenge
set) which result from a base of 34 low-level descriptors (LLD) with 34 corresponding delta coef-
ficients appended, and 21 functionals applied to each of these 68 LLD contours (1 428 features).
In addition, 19 functionals are applied to the 4 pitch-based LLD and their four delta coefficient
contours (152 features). Finally the number of pitch onsets (pseudo syllables) and the total
duration of the input are appended (2 features). The only difference to the INTERSPEECH
2010 Paralinguistic Challenge set is the normalisation of the ‘maxPos’ and ‘minPos’ features
which are normalised to the segment length in the present set.

2.6 Using Portaudio for live recording/playback

The components cPortaudioSource and cPortaudioSink can be used as replacements for
cWaveSource and cWaveSink. They produce/expect data in the same format as the wave com-
ponents. See section 3.3.3 and section 3.3.4 for details on those two components.

2.7. VISUALISING DATA WITH GNUPLOT 33

Two example configuration files are provided which illustrate the basic use of PortAudio for
recording live audio to file (config/demo/audiorecorder.conf) and for playing live audio from
a file (config/demo/audioplayer.conf).

Using these configurations is very simple. To record audio to a file, type:

SMILExtract −C c o n f i g /demo/ aud io r e co rde r . conf −sampleRate 44100 −
channe l s 2 −O output . wave

To stop the recording, quit the program with Ctrl+C. To play the recorded audio use this
command:

SMILExtract −C c o n f i g /demo/ aud iop layer . conf −I output . wave

On top of these two simple examples, a live feature extraction example is provided, which
captures live audio and extracts prosodic features (pitch and loudness contours) from the input.
The features are saved to a CSV file. To use this configuration, type:

SMILExtract −C c o n f i g / l iveProsodyAcf . conf

The recording has started once you see the message

(MSG) [2] in cComponentManager : s t a r t i n g s i n g l e thread p r o c e s s i n g loop

You can now speak an example sentence or play some music in front of your microphone. When
you are done, press Ctrl+C to terminate openSMILE. A CSV file called prosody.csv has now
been created in the current directory (use the -O command-line option to change the file name).
You can now plot the loudness and pitch contours using gnuplot, for example, as is described in
the next section.

2.7 Visualising data with Gnuplot

In order to visualise feature contours with gnuplot, you must have perl5 and gnuplot installed.
On Linux perl should be installed by default (if not, check your distributions documentation
on how to install perl), and gnuplot can be either installed via your distribution’s package
manager (On Ubuntu: sudo apt-get install gnuplot-nox), or compiled from the source
(http://www.gnuplot.info). For windows, gnuplot binaries are available from the project web-
page (http://www.gnuplot.info). For perl5, download the ActiveState Perl distribution from
http://www.activestate.com/ and install it. Moreover, you will need the bash shell to execute
the .sh scripts (if you don’t have the bash shell, you must type these commands manually on
the windows command-prompt).

A set of scripts, which are included with openSMILE in the directory scripts/gnuplot,
simplifies the file conversion process and simple plotting tasks. The set of these scripts is by far
not complete, but we feel this is not necessary. These script serve as templates which you can
easily adjust for you own tasks. They convert (transpose) the CSV files generated by openSMILE
to a representation which can be read by gnuplot directly and call gnuplot with some default
plot scripts as argument.

For some ready-to-use examples, see the scripts plotchroma.sh to plot Chroma features as a
‘Chromagram’ and plotaudspec.sh to plot an auditory spectrum. The following commands give
a step-by-step guide on how to plot Chroma features and an auditory spectrum (Note: we assume
that you execute these commands in the top-level directory of the openSMILE distribution,
otherwise you may need to adjust the paths):
First, you must extract chroma features from some music example file, e.g.:

SMILExtract −C c o n f i g / chroma f f t . conf −I wav samples /music01 . wav −O
chroma . csv

34 CHAPTER 2. USING OPENSMILE

Then you can plot them with

cd s c r i p t s / gnuplot
sh plotchroma . sh . . / . . / chroma . csv

If your gnuplot installation is set up correctly you will now see a window with a ‘Chromagram’
plot.
For the auditory spectrum, follow these steps:

SMILExtract −C c o n f i g / audspec . conf −I wav samples /music01 . wav −O
audspec . csv

Then you can plot them with

cd s c r i p t s / gnuplot
sh plotaudspec . sh . . / . . / audspec . csv

If your gnuplot installation is set up correctly you will now see a window with a auditory
spectrogram plot.

Two more universally usable scripts are also included. First we describe the plotmatrix.sh

script. Its usage is the same as for the plotaudspec.sh and plotchroma.sh scripts:

cd s c r i p t s / gnuplot
sh p lotmatr ix . sh <f i l ename o f csv− f i l e saved by openSMILE>

This script plots the matrix as a 2D-surface map with the gnuplot script plotmatrix.gp, thereby
using a grey-scale color-map, displaying time in frames on the x-axis and the feature index on
the y-axis.

To plot feature contours such as pitch or energy, first extract some example contours using
the prosodyAcf.conf configuration, for example (You can also use the live feature extractor
configuration, mentioned in the previous section):

SMILExtract −C c o n f i g / prosodyAcf . conf −I wav samples / speech02 . wav −O
prosody . csv

Next, you can plot the pitch contour with

cd s c r i p t s / gnuplot
sh p lo tcontour . sh 3 . . / . . / prosody . csv

The general syntax of the plotcontour.sh script is the following:

sh p lo tcontour . sh <index o f f e a t u r e to plot> <f i l ename o f CSV f i l e
conta in ing f e a tu r e s>

The index of the feature to plot can be determined by opening the CSV file in a text editor
(gedit, kate, vim, or Notepad++ on Windows, for example). The first two features in the file
are always ‘frameIndex’ and ‘frameTime’ with indices 0 and 1.

Plotting of features in real-time when performing on-line feature extraction is currently not
supported. However, since features are extracted incrementally anyways, it is possible to write a
custom output plugin, which passes the data to some plotting application in real-time, or plots
the data directly using some GUI API.

Chapter 3

Reference section

This section includes a list of components included with openSMILE and detailed documentation
for each component (section 3.3). The components are grouped in logical groups on behalf of
their functionality. The following section (3.1) documents available command-line options and
describes the general usage of the SMILExtract command-line tool. A documentation of the
configuration file format can be found in section 3.2.

3.1 General usage - SMILExtract

The SMILExtract binary is a very powerful command-line utility which includes all the built-in
openSMILE components. Using a single ini-style configuration file, various modes of operation
can be configured. This section describes the command-line options available when calling
SMILExtract. Some options take an optional parameter, denoted by [parameter-type], while
some require a mandatory parameter, denoted by <parameter-type>.

Usage: SMILExtract [-option (value)] ...

-C, -configfile <string>
Path to openSMILE config file.
Default: ’smile.conf’

-l, -loglevel <int>
Verbosity level of log messages (MSG, WRN, ERR, DBG) (0-
9). 1: only important messages, 2,3: more detailed messages,
4,5: very detailed debug messages (if -debug is enabled), 6+:
currently unused.
Default: 2

-d, -debug Show debug log-messages (DBG) (this is only available if the
binary was compiled with the DEBUG preprocessor flag)
Default: off

-h Show usage information and exit.

-L, -components Show full component list (this list includes plugins, if they are
detected correctly), and exit.

-H, -configHelp [componentName:string]

35

36 CHAPTER 3. REFERENCE SECTION

Show the documentation of configuration options of all avail-
able components - including plugins - and exit. If the optional
string parameter is given, then only documentation of compo-
nents beginning with the given string will be shown.

-configDflt [string]
Show default configuration file section templates for all com-
ponents available (empty parameter), or selected components
beginning with the string given as parameter. In conjunction
with the ’cfgFileTemplate’ option a comma separated list of
components can be passed as parameter to ’configDflt’, to gen-
erate a template configuration file with the listed components.

-cfgFileTemplate Experimental functionality to print a configuration file tem-
plate containing the components specified in a comma sepa-
rated string as argument to the ’configDflt’ option.

-cfgFileDescriptions If this option is set, then option descriptions will be included
in the generated template configuration files.
Default: off

-c, -ccmdHelp Show user defined command-line option help in addition to the
standard usage information (as printed by ’-h’). Since openS-
MILE provides means to define additional command-line op-
tions in the configuration file, which are available only after
parsing the configuration file, and additional command-line op-
tion has been introduced to show a help on these options. A
typical command-line to show this help would be SMILExtract

-c -C myconfigfile.conf.

-logfile <string>
Specifies the path and filename of the log file to use. Make sure
the path of the log-file is writeable.
Default: ’smile.log’

-appendLogfile If this option is specified, openSMILE will append log messages
to an existing log-file instead of overwriting the log-file at every
program start (which is the default behaviour).

-nologfile If this option is specified, openSMILE does not write to a log
file (use this on a read-only filesystems, for example).

-noconsoleoutput If this option is specified, no log-output is displayed in the
console. Logging to the log file is not affected by this option,
see ’nologfile’ for disabling the log-file.

-t, -nticks <int>
Number of ticks (=component loop iterations) to process (-1 =
infinite) (Note: this only works for single thread processing, i.e.
nThreads=1 set in the config file). This option is not intended
for normal use. It is for debugging component execution code
only.
Default: -1

3.2. UNDERSTANDING CONFIGURATION FILES 37

3.2 Understanding configuration files

openSMILE configuration files follow an INI-style file format. The file is divided into sections,
which are introduced by a section header:

[sectionName : sect ionType]

The section header, opposed to standard INI-format, always contains two parts, the section
name (first part) and the section type (second part). The two parts of the section header are
separated by a colon (:). The section body (the part after the header line up to the next header
line or the end of the file) contains attributes (which are defined by the section type; a description
of the available types can be seen using the -H command-line option as well as in section 3.3).
Attributes are given as name = value pairs. An example of a generic configuration file section is
given here:

[instancename : conf igType] <−− t h i s s p e c i f i e s the header
v a r i a b l e 1 = value <−− example o f a s t r i n g v a r i a b l e
v a r i a b l e 2 = 7 .8 <−− example o f a ”numeric ” v a r i a b l e
v a r i a b l e 3 = X <−− example o f a ” char ” v a r i a b l e
subconf . var1 = myname <−− example o f a v a r i a b l e in a sub type
myarr [0] = value0 <−− example o f an array
myarr [1] = value1
anotherar r = value0 ; value1 <−− example o f an i m p l i c i t array
noarray = value0 \ ; va lue1 <−− use \ ; to quote the s epara to r ’ ; ’
s t rArr [name1] = value1 <−− a s s o c i a t i v e arrays , name=value p a i r s
s t rArr [name2] = value2
; l i n e−comments may be expres sed by ; // or # at the beg inning

Principally the config type names can be any arbitrary names. However, for consistency the
names of the components and their corresponding configuration type names are identical. Thus,
to configure a component cWaveSource you need a configuration section of type cWaveSource.

In every openSMILE configuration file there is one mandatory section, which configures the
component manager. This is the component, which instantiates and runs all other components.
The following sub-section describes this section in detail.

3.2.1 Enabling components

The components which will be run, can be specified by configuring the cComponentManager com-
ponent, as shown in the following listing (the section always has to be called componentInstances):

[componentInstances : cComponentManager] <−− don ’ t change t h i s
; one data memory component must always be s p e c i f i e d !
; the d e f a u l t name i s ’ dataMemory ’
; i f you c a l l your data memory in s t anc e ’ dataMemory ’ ,
; you w i l l not have to s p e c i f y the reader . dmInstance v a r i a b l e s
; f o r a l l o ther components !
; NOTE: you may s p e c i f y more than one data memory component
; c o n f i g u r e the d e f a u l t data memory :
i n s t anc e [dataMemory] . type=cDataMemory
; c o n f i g u r e an example data source (name = source1) :
i n s t anc e [source1] . type=cExampleSource

The associative array instance is used to configure the list of components. The component
instance names are specified as the array keys and are freely definable. They can contain all
characters except for], however, it is recommended to only use alphanumeric characters, , and

38 CHAPTER 3. REFERENCE SECTION

-. The component types (i.e. which component to instantiate), are given as value to the type

option.
Note: for each component instance specified in the instance array a configuration section

in the file must exist (except for the data memory components!), even if it is empty (e.g. if
you want to use default values only). In this case you need to specify only the header line
[name:type].

3.2.2 Configuring components

The parameters of each component can be set in the configuration section corresponding to the
specific component. For a wave source, for example, (which you instantiate with the line

instance[source1].type = cWaveSource

in the component manager configuration) you would add the following section (note that the
name of the configuration section must match the name of the component instance, and the
name of the configuration type must match the component’s type name):

[source1 : cWaveSource]
; the f o l l o w i n g s e t s the l e v e l t h i s component w r i t e s to
; the l e v e l w i l l be c rea ted by t h i s component
; no other components may wr i t e to a l e v e l having the same name

w r i t e r . dmLevel = wave
f i l ename = input . wav

This sets the file name of the wave source to input.wav. Further, it specifies that this
wave source component should write to a data memory level called wave. Each openSMILE
component, which processes data has at least a data reader (of type cDataReader), a data
writer (of type cDataWriter), or both. These sub-components handle the interface to the data
memory component(s). The most important option, which is mandatory, is dmLevel, which
specifies the level to write to or to read from. Writing is only possible to one level and only
one component may write to each level. We would like to note at this point that the levels do
not have to be specified implicitly by configuring the data memory – in fact, the data memory
is the only component which does not have and does not require a section in the configuration
file – rather, the levels are created implicitly through writer.dmLevel = newlevel. Reading is
possible from more than one level. Thereby, the input data will be concatenated frame-wise to
one single frame containing data from all input levels. To specify reading from multiple levels,
separate the level names with the array separator ’;’, e.g.:

reader . dmLevel = l e v e l 1 ; l e v e l 2

The next example shows the configuration of a cFramer component frame, which creates
(overlapping) frames from raw wave input, as read by the wave source:

[frame : cFramer]
r eader . dmLevel=wave
w r i t e r . dmLevel=frames
f rameSize = 0.0250
frameStep = 0.010

The component reads from the level wave, and writes to the level frames. It will create
frames of 25 ms length at a rate of 10 ms. The actual frame length in samples depends on the
sampling rate, which will be read from meta-information contained in the wave level. For more
examples please see section 2.5.

3.2. UNDERSTANDING CONFIGURATION FILES 39

3.2.3 Including other configuration files

To include other configuration files into the main configuration file use the following command
on a separate line at the location where you want to include the other file:

\{path/to/config.file.to.include\}

This include command can be used anywhere in the configuration file (as long it is on a sep-
arate line). It simply copies the lines of the included file into the main file while loading the
configuration file into openSMILE .

3.2.4 Linking to command-line options

openSMILE allows for defining of new command-line options for the SMILExtract binary in the
configuration file. To do so, use the \cm command as value, which has the following syntax:

\cm[longopt ion (sho r topt i on) { d e f a u l t va lue } : d e s c r i p t i o n text]

The command may be used as illustrated in the following example:

[exampleSect ion : exampleType]
myAttrib1 = \cm[longopt ion (shor topt) { d e f a u l t } : de s c r . t ex t]
myAttrib2 = \cm[longopt ion { d e f a u l t } : de s c r . t ex t]

The shortopt argument and the default value are optional. Note that, however, either
default and/or descr. text are required to define a new option. If neither of the two is
specified, the option will not be added to the command-line parser. You can use this mode to
reference options that were already added, i.e. if you want to use the value of an already existing
option which has been defined at a prior location in the config file:

[exampleSect ion2 : exampleType]
myAttrib2 = \cm[longopt ion]

An example for making a filename configurable via the command-line, is given here:

f i l ename = \cm[f i l ename (F) { d e f a u l t . f i l e } : use t h i s opt ion to s p e c i f y the
f i l ename f o r the XYZ component]

You can call SMILExtract -c -C yourconfigfile.conf to see your command-line options ap-
pended to the general usage output.

Please note: When specifying command-line options as a value to an option, the \cm com-
mand is the only text allowed at the right side of the equal sign! Something like key = value

\cm[...] is currently not allowed. We understand that this may be a useful feature, thus it
may appear in one of the following releases.

3.2.5 Defining variables

This feature is not yet supported, but will be added soon. This should help avoid duplicate
values and increase maintainability of configuration files.

3.2.6 Comments

Single line comments may be initiated by the following characters at the beginning of the line
(only whitespaces may follow the characters): ; # // %

If you want to comment out a partial line, please use //. Everything following the double
slash on this line (and the double slash itself) will be considered a comment and will be ignored.

Multi-line comments are now supported via the C-style sequences /* and */. In order to
avoid parser problems here, please make sure these sequences are on a separate line, e.g.

40 CHAPTER 3. REFERENCE SECTION

/∗
[exampleSect ion2 : exampleType]
myAttrib2 = \cm[longopt ion]
∗/

and not:

/∗ [exampleSect ion2 : exampleType]
myAttrib2 = \cm[longopt ion]∗/

The latter case is supported, however, you must ensure that the closing */ is not followed by
any whitespaces.

3.3 Component description

This section contains detailed descriptions of the openSMILE built-in components and their
configuration options. First, the abstract API base classes are listed and briefly documented.
These cannot be instantiated directly, however, it is relevant to know about their existence and
moreover, they play an important role if you are developing your own components (in this case,
please do also consult the developer’s documentation in section 4).

Please note, that some components are included with openSMILE which are not documented
in this section. These components are experimental components or preliminary test components,
which are not (yet) officially supported. Thus, you are advised not to spend you time on figuring
out how to use them, if you do not know what the purpose of these components is. If you, on
the other hand, happen to be a developer or for any other reasons you decide to work with
these unfinished components, you might get some information by calling SMILExtract -L to
list all components compiled into your SMILExtract binary and then calling SMILExtract -H

component-name to see the configuration parameters this component requires.
Advice: Generally it is a good practice to use SMILExtract -H component-name to get the

most up-to-date documentation of the component’s capabilities. This is especially true if you are
working with the latest SVN snapshot, since openSMILE’s development process is quite active
and things might change very quickly without this documentation being updated every time.

The following reference part of this documentation lists the stable components and describes
their functionality in detail. Not listed are base classes and parent components, which cannot
be instantiated directly. For those components, please refer to the developer’s documentation
in section 4.

The documentation syntax uses some naming conventions. A [] appended to an option name
indicates that the option is an array option. I.e. multiple options can be separated by ; or the
elements can be addressed directly via option[n], or option[name], if the field is an associative
array (see the textual description of the option to find out whether it is a standard array or an
associative array). openSMILE has no boolean options, thus all boolean flags are represented as
integer options where a 1 indicates true, enable, or on, etc. and a 0 indicates false, disabled,
or off, etc.

3.3.1 cComponentManager

Description: The component manager controls the instantiation of all components in openS-
MILE. Thus, it is inherently present in all configurations. Its configuration section must always
be present as the first section in an openSMILE configuration file, the configuration section must
be called componentInstances. You must use the associative array instance[] to configure the

3.3. COMPONENT DESCRIPTION 41

list of components which will be instantiated in your configuration. The configuration options
are described in detail in the following:

instance[] = <object of type ‘cComponentManagerInst’> Associative array storing the
component list. Array indices are the instance names. Array elements must specify the
type of the component to instantiate (see type option below).

instance[].type = <string> [Default: ‘(null)’]
The component type to create, i.e. the name of the component class to create an instance
of. All component classes begin with ‘c’ followed by a capital letter.

instance[].configInstance = <string> [Default: ‘(null)’]
You will rarely have to use this option. This can be used to connect a configuration
instance (a section in the configuration file) to this component instance. By default a
configuration instance with the same name as the component instance will be attached to
each component.

instance[].threadId = <numeric> [Default: -1]
This specified the thread ID this component should be run in. The default is -1, which
indicates that the component will be run in the first (or only) thread, or – if nThreads=0
– each component will be automatically run in a separate thread (this is untested and very
experimental).

printLevelStats = <numeric> [Default: 1]
This specifies the level of detail to display the data memory configuration for debugging
purposes with. Valid values 0-6. 0 disables the data memory configuration output, 6 is
maximum detail.

nThreads = <numeric> [Default: 1]
This specifies the number of threads to create. A 1 configures single thread mode, a 0
configures the fully automatic multi-threading mode, where each component is run in a
separate thread. Please note, that due to the overhead of creating and managing the
threads, the use of multi-threading only makes sense for live demonstrator systems, or
computationally complex tasks combined with large input files. Batch processing of short
files does not benefit from multi-threading (on the contrary, it degrades performance!).

Class hierarchy: cComponentManager (top-level)

3.3.2 Basic data memory and interface components

This section describes the data memory (from a configuration option point of view), and the
data reader and writer configuration options.

cDataMemory

Description: This is the central data memory component. It needs to be included in the
component manager’s instance list for every configuration file. It is the only component that
has no own configuration section in the configuration file. The data memory is completely
configured by the other components via their cDataWriter (section 3.3.2) and cDataReader
(section 3.3.2) sub-components.

Class hierarchy: cSmileComponent → cDataMemory

42 CHAPTER 3. REFERENCE SECTION

Configuration options:

isRb = <numeric> [Default: 1]
The default for the isRb option for all levels.

nT = <numeric> [Default: 100]
The default level buffer size in frames for all levels.

level[] = <object of type ‘cDataMemoryLevel’> See the documentation of ‘cDataMem-
oryLevel’ for more information (section 3.3.2). An associative array containing the level
configuration (obsolete, you should use the cDataWriter configuration in the components
that write to the dataMemory to properly configure the dataMemory!)

cDataMemoryLevel

Description: This structure specifies an optional configuration of a data memory level. If
this is given, it will overwrite any defaults and inherited values from input levels. This con-
figuration structure is part of the cDataWriter (section 3.3.2) components and cDataMemory
(section 3.3.2). Normally, you should only change this configuration via the data writer that
creates the level (levelconf in cDataWriter, thus all options here are prefixed with ‘levelconf’).

Class hierarchy: cDataMemoryLevel (top-level, sub-component of cDataMemory)

Configuration options:

levelconf.name = <string> [Default: ‘(null)’]
The name of this data memory level, must be unique within one data memory instance.

levelconf.type = <string> [Default: ‘float’]
The data type of the level [can be: ’float’ or ’int’(eger) , currently only float is supported
by the majority of processing components]

levelconf.isRb = <numeric> [Default: 1]
Flag that indicates whether this level is a ring-buffer level (1) or not (0). I.e. this level
stores the last ‘nT’ frames, and discards old data as new data comes in (if the old data
has already been read by all registered readers; if this is not the case, the level will report
that it is full to the writer attempting the write operation)

levelconf.nT = <numeric> [Default: 100]
The size of the level buffer in frames (this overwrites the ‘lenSec’ option)

levelconf.T = <numeric> [Default: 0]
The frame period of this level in seconds. Use a frame period of 0 for a-periodic levels (i.e.
data that does not occur periodically)

levelconf.lenSec = <numeric> [Default: 0]
The size of the level buffer in seconds

levelconf.frameSizeSec = <numeric> [Default: 0]
The size of one frame in seconds. (This is generally NOT equal to 1/T, because frames
may overlap)

levelconf.growDyn = <numeric> [Default: 0]
Supported currently only if ’ringbuffer=0’. If this option is set to 1, the level grows

3.3. COMPONENT DESCRIPTION 43

dynamically, if more memory is needed. You can use this to store live input of arbitrary
length in memory. However, be aware that if openSMILE runs for a long time, it will
allocate more and more memory!

levelconf.noHang = <numeric> [Default: 1]
This option controls the ‘hang’ behaviour for ring-buffer levels, i.e. the behaviour exhibited,
when the level is full because data from the ring-buffer has not been marked as read because
not all readers registered to read from this level have read data. Valid options are, 0, 1,
and 2:

• 0 = always wait for readers, mark the level as full and make writes fail until all readers
have read at least the next frame from this level.

• 1 = don’t wait for readers, if no readers are registered, i.e. this level is a dead-end
(this is the default).

• 2 = never wait for readers, writes to this level will always succeed (reads to non
existing data regions might then fail), use this option with a bit of caution.

cDataReader

Description: This is the dataMemory interface component that reads data as vector or matrix
from a dataMemory (section 3.3.2) component. It is used internally by all dataProcessor, data-
Source, and dataSink components. A cDataReader can read from one or more data memory
levels (cannot be changed during the program’s run-time phase). In the latter case a single
vector is returned which consists of all individual vectors concatenated. Reading from multiple
levels implies waiting for data on the ‘slowest’ level, since only completely concatenated frames
are read.

Class hierarchy: cSmileComponent → cDataReader

Configuration options:

dmInstance = <string> [Default: ‘dataMemory’]
The name of the cDataMemory instance this reader should connect to. This allows for
complex configurations with multiple, independent data memories. For most applications
the default ‘dataMemory’ should be reasonable. This is also the assumed default when
automatically generating a configuration file.

dmLevel[] = <string> [Default: ‘(null)’]
The level in the data memory instance specified by ‘dmInstance’ which to read from. If this
array element contains more than one element, this reader will read data from multiple
input levels, and concatenate the data to generate a single frame/vector. It is a good
practice to have unique field names in all levels that you wish to concatenate. Note: If
reading from multiple levels, the reader can only return a successfully read frame, if data
is available for reading on all input levels. If data is missing on one level, the reader cannot
output data, even if data is present on the other levels.

forceAsyncMerge = <numeric> [Default: 0]
1/0 = yes/no : force framewise merging of levels with differing frame period, if multiple
levels are specified in ‘dmLevel’.

errorOnFullInputIncomplete = <numeric> [Default: 1]
1/0 = yes/no : 1 = abort with an error if full input matrix reading is activated (frame-

44 CHAPTER 3. REFERENCE SECTION

Size=0 and frameStep=0 =¿ frameMode=full) and beginning of matrix (curR) is not 0 (if
this option is set to 0, only a warning is shown).

cDataWriter

Description: This is the dataMemory (section 3.3.2) interface component that writes vector or
matrix data to a dataMemory level. A writer can write only to a single level in the dataMemory,
this level cannot be changed during the run-time phase.

Class hierarchy: cSmileComponent → cDataWriter

Configuration options:

dmInstance = <string> [Default: ‘dataMemory’]
The cDataMemory instance this writer shall connect to. This allows for complex con-
figurations with multiple, independent data memories. For most applications the default
‘dataMemory’ should be reasonable. This is also the assumed default when automatically
generating a configuration file.

dmLevel = <string> [Default: ‘(null)’]
The data memory level this writer will write data to. You can specify any name here, this
writer will register and create a level of this name in the dataMemory during initialisation
of openSMILE. Please be aware of the fact that only one writer can write to a data memory
level, therefore you are not allowed to use the same name again in a ‘dmLevel’ option of
any other component in the same config.

levelconf = <object of type ‘cDataMemoryLevel’> See the documentation of ‘cDataMem-
oryLevel’ for more information (section 3.3.2). This structure specifies an optional config-
uration of this data memory level. If this is set, it will overwrite any defaults or inherited
values from input levels. For details see the help on the configuration type ‘cDataMemo-
ryLevel’ (section 3.3.2).

3.3.3 Data sources

This section contains all data source components.

cArffSource

Description: This component reads WEKA ARFF files. The full ARFF format is not yet
supported, but a simplified form, such as the files generated by the ‘cArffSink’ (section 3.3.4
component can be parsed and read. This component reads all (and only!!) ‘numeric’ or ‘real’
attributes from an ARFF file (WEKA file format) into the specified data memory level. Thereby
each instance (i.e. one line in the arff file’s data section) corresponds to one frame. The frame
period is 0 by default (aperiodic level), use the ‘period’ option to change this and use a fixed
period for each frame/instance. Automatic generation of frame timestamps from a ‘timestamp’
field in the ARFF file is not yet supported.

Class hierarchy: cSmileComponent → cDataSource → cArffSource

Configuration options:

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

3.3. COMPONENT DESCRIPTION 45

buffersize = <numeric> [Default: 0]
The buffer size for the output level in frames (this overwrites buffersize sec).

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level in seconds.

blocksize = <numeric> [Default: 0]
A size of data blocks to write at once, in frames (same as blocksizeW for source only
components, this overwrites blocksize sec, if set).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write in frames (this overwrites blocksize and blocksize sec, if it
is set) (this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds.

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds (this option overwrites blocksize sec!)
(this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

period = <numeric> [Default: 0]
(optional) The period of the input frames, if it cannot be determined from the input file
format. (if set and ! = 0, this will overwrite any automatically set values, from the parent
level or the input file (samplerate, frame period etc.).)

filename = <string> [Default: ‘input.arff’]
The filename of the ARFF file to read.

skipClasses = <numeric> [Default: 0]
The number of numeric(!) (or real) attributes (values) at end of each instance to skip
(Note: nominal and string attributes are ignored anyway, this option only applies to the
last numeric attributes, even if they are followed by string or nominal attributes). To have
more fine grained control over selecting attributes, please use the component cDataSelector
(section 3.3.6)!

cCsvSource

Description: This component reads CSV (Comma separated value) files. It reads all columns
as attributes into the data memory. One line represents one frame. The first line may contain
a header with the feature names (see the ‘header’ option).

Class hierarchy: cSmileComponent → cDataSource → cCsvSource

Configuration options:

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level in frames (this overwrites buffersize sec).

46 CHAPTER 3. REFERENCE SECTION

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level in seconds.

blocksize = <numeric> [Default: 0]
A size of data blocks to write at once, in frames (same as blocksizeW for source only
components, this overwrites blocksize sec, if set).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write in frames (this overwrites blocksize and blocksize sec, if it
is set) (this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds.

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds (this option overwrites blocksize sec!)
(this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

period = <numeric> [Default: 0]
(optional) The period of the input frames, if it cannot be determined from the input file
format. (if set and ! = 0, this will overwrite any automatically set values, from the parent
level or the input file (samplerate, frame period etc.).)

filename = <string> [Default: ‘input.csv’]
The CSV file to read

delimChar = <char> [Default: ‘,’]
The CSV delimiter character to use. Usually ’,’ or ’;’.

header = <string> [Default: ‘auto’]
yes/no/auto : whether to read the first line of the CSV file as header (yes), or treat it as
numeric data (no), or automatically determine from the first field in the first line whether
to read the header or not (auto).

cHtkSource

Description: This component reads data from binary HTK parameter files. Each frame of the
HTK file is read a frame into the openSMILE data memory. The read frame has a single array
field which has ‘frameSize’ elements. The ‘frameSize’ is determined by the header of the HTK
parameter file. The paramKind header field of the HTK file is ignored. The frame period is also
read from the HTK file.

Class hierarchy: cSmileComponent → cDataSource → cHtkSource

Configuration options:

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level in frames (this overwrites buffersize sec).

3.3. COMPONENT DESCRIPTION 47

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level in seconds.

blocksize = <numeric> [Default: 0]
A size of data blocks to write at once, in frames (same as blocksizeW for source only
components, this overwrites blocksize sec, if set).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write in frames (this overwrites blocksize and blocksize sec, if it
is set) (this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds.

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds (this option overwrites blocksize sec!)
(this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

period = <numeric> [Default: 0]
(optional) The period of the input frames, if it cannot be determined from the input file
format. (if set and ! = 0, this will overwrite any automatically set values, from the parent
level or the input file (samplerate, frame period etc.).)

filename = <string> [Default: ‘input.htk’]
Filename of HTK parameter file to read.

featureName = <string> [Default: ‘htkpara’]
The name of the array-field which is to be created in the data memory output level for
the data array (frame) read from the HTK file.

cPortaudioSource

Description: This component handles live audio recording from the sound-card via the PortAu-
dio library. In order to use this component, you must have a SMILExtract binary linked against
the PortAudio library. You can very this, if you run SMILExtract -H cPortaudioSource. If
you see help on the configuration options of this component, your binary is linked against Por-
tAudio. If not, then please refer to section 2.2 for instructions on how to build from the source
with PortAudio support.

Class hierarchy: cSmileComponent → cDataSource → cPortaudioSource

Configuration options:

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level in frames (this overwrites buffersize sec).

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level in seconds.

48 CHAPTER 3. REFERENCE SECTION

blocksize = <numeric> [Default: 0]
A size of data blocks to write at once, in frames (same as blocksizeW for source only
components, this overwrites blocksize sec, if set).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write in frames (this overwrites blocksize and blocksize sec, if it
is set) (this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds.

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds (this option overwrites blocksize sec!)
(this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

period = <numeric> [Default: 0]
(optional) The period of the input frames, if it cannot be determined from the input file
format. (if set and ! = 0, this will overwrite any automatically set values, from the parent
level or the input file (samplerate, frame period etc.).)

monoMixdown = <numeric> [Default: 0]
1 = mix down all recorded channels to 1 mono channel.

device = <numeric> [Default: -1]
The ID of the PortAudio device to use (device number, see the option ‘listDevices’ to get
information on device numbers).

listDevices = <numeric> [Default: 0]
If set to 1, openSMILE will list available portaudio devices during initialisation phase and
exit immediately after that (you might get an error message on windows, which you can
ignore).

sampleRate = <numeric> [Default: 16000]
The sampling rate to use for audio recording (if supported by device!).

channels = <numeric> [Default: 1]
The number of channels to record (check your device’s capabilities!).

nBits = <numeric> [Default: 16]
The number of bits per sample and channel.

nBPS = <numeric> [Default: 0]
The number of bytes per sample and channel (0=determine automatically from nBits).

audioBuffersize = <numeric> [Default: 0]
The size of the portaudio recording buffer in samples (overwrites audioBuffersize sec, if
set).

audioBuffersize sec = <numeric> [Default: 0.05]
The size of the portaudio recording buffer in seconds. This value has influence on the
system latency. Setting it too high might introduce a high latency. A too low value might
lead to dropped samples and reduced performance.

byteSwap = <numeric> [Default: 0]
1 = swap bytes, big endian <-> little endian (usually not required).

3.3. COMPONENT DESCRIPTION 49

cSignalGenerator

Description: This component provides a signal source. This source generates various noise
types and pre-defined signals and value patterns. See the configuration documentation for a list
of currently implemented types.

Class hierarchy: cSmileComponent → cDataSource → cSignalGenerator

Configuration options:

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level in frames (this overwrites buffersize sec).

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level in seconds.

blocksize = <numeric> [Default: 0]
A size of data blocks to write at once, in frames (same as blocksizeW for source only
components, this overwrites blocksize sec, if set).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write in frames (this overwrites blocksize and blocksize sec, if it
is set) (this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds.

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds (this option overwrites blocksize sec!)
(this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

period = <numeric> [Default: 0]
The period of the output frames. You must specify this option for the signal generator
component!

nFields = <numeric> [Default: 1]
The number of fields in the output vector, set to -1 to use the size of the ‘nElements’ array
or the ‘fieldNames’ array, if no ‘nElements’ array is given.

nElements[] = <numeric> [Default: 1]
An array of number of values/elements for each field in the output vector (default is 1).

fieldNames[] = <string> [Default: ‘(null)’]
An array of names of fields in the output vector (default for all: ‘noiseN’, where N is the
field number).

signalType = <string> [Default: ‘white’]
The type of signal/noise to generate for ALL(!) output fields. If you want different types
of signals for the individual fields, use multiple signalGenerator sources and combine the
output vectors. Currently implemented noise and signal types are:

50 CHAPTER 3. REFERENCE SECTION

white pseudo-random white Gaussian noise.

const constant value output, use ’constant’ parameter to set this value.

sine single sine wave (default range -1 to +1), see ‘signalPeriod’ or ‘frequency’ option and
the ‘phase’ option.

rect rectangular periodic signal (default range -1 to +1), see ‘signalPeriod’ or ‘frequency’
option and ‘phase’ option.

randSeed = <numeric> [Default: 1]
Random seed, for pseudo random noise which is transformed into Gaussian white noise.

scale = <numeric> [Default: 1.0]
A scaling factor by which the generated signal is multiplied by.

const = <numeric> [Default: 0]
The constant value for the ‘constant’ signal type.

signalPeriod = <numeric> [Default: 1.0]
The period T in seconds of periodic signals (sine, rect, etc.) (T = 1/f). Don’t forget to set
the sample (=frame) period via ‘writer.levelconf.T’ or the ‘period’ option. Don’t confuse
this option with the ‘period’ option!

frequency = <numeric> [Default: 1.0]
The frequency f in Hz of periodic signals (sine, rect, etc.) (f = 1/T). This overrides
the ‘signalPeriod’ option, if both are set. Don’t forget to set the sample (=frame) period
via ‘writer.levelconf.T’ or the ‘period’ option. Don’t confuse this option with the ‘period’
option!

phase = <numeric> [Default: 0.0]
The initial phase (offset in time) of periodic signals, in seconds.

length = <numeric> [Default: 3]
The length of the signal to generate (in seconds), -1.0 for infinite.

lengthFrames = <numeric> [Default: -1]
The length of signal to generate (in frames), -1 for infinite (overwrites ’length’, if set).

cWaveSource

Description: This component reads an uncompressed RIFF (PCM-WAVE) file and saves it as
a stream to the data memory. For most feature extraction tasks you will require a ‘cFramer’
(section 3.3.6) component which chunks the input stream into short term frames.

Class hierarchy: cSmileComponent → cDataSource → cWaveSource

Configuration options:

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter subcom-
ponent, which handles the dataMemory interface for data output. See the documentation
of ‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level in frames (this overwrites buffersize sec).

3.3. COMPONENT DESCRIPTION 51

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level in seconds.

blocksize = <numeric> [Default: 0]
A size of data blocks to write at once, in frames (same as blocksizeW for source only
components, this overwrites blocksize sec, if set).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write in frames (this overwrites blocksize and blocksize sec, if it
is set) (this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds.

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write at once, in seconds (this option overwrites blocksize sec!)
(this option is provided for compatibility only, it is exactly the same as ‘blocksize’).

period = <numeric> [Default: 0]
(optional) The period of the input frames, if it cannot be determined from the input file
format. (if set and ! = 0, this will overwrite any automatically set values, from the parent
level or the input file (samplerate, frame period etc.).)

filename = <string> [Default: ‘input.wav’]
The filename of the PCM wave file to load. Only uncompressed RIFF files are supported.
Use a suitable converter (mplayer, for example) to convert other formats to wave.

monoMixdown = <numeric> [Default: 1]
Mix down all channels to 1 mono channel (1=on, 0=off).

start = <numeric> [Default: 0]
The read start point in seconds from the beginning of the file.

end = <numeric> [Default: -1]
The read end point in seconds from the beginning of file (-1 = read to EoF).

endrel = <numeric> [Default: 0]
The read end point in seconds from the END of file (only if ‘end’ = -1, or not set).

startSamples = <numeric> [Default: 0]
The read start in samples from the beginning of the file (this overwrites ‘start’).

endSamples = <numeric> [Default: -1]
The read end in samples from the beginning of the file (this overwrites ‘end’ and ‘endrel-
Samples’).

endrelSamples = <numeric> [Default: 0]
The read end in samples from the END of file (this overwrites ‘endrel’).

noHeader = <numeric> [Default: 0]
1 = treat the input file as ‘raw’ format, i.e. don’t read the RIFF header. You must specify
the parameters ‘sampleRate’, ‘channels’, and possibly ‘sampleSize’ if the defaults don’t
match your file format.

52 CHAPTER 3. REFERENCE SECTION

sampleRate = <numeric> [Default: 16000]
Set/force the sampling rate that is assigned to the input data (required for reading raw
files).

sampleSize = <numeric> [Default: 2]
Set/force the size of one sample (in bytes) (required for reading raw files).

channels = <numeric> [Default: 1]
Set/force the number of channels (required for reading raw files).

3.3.4 Data sinks

This section contains all data sink components, except the (on-line) classifier components.

cArffSink

Description: This component writes dataMemory data to an ARFF file (WEKA). Depending
on your configuration, an instance name field, a frame index, and a frame time field can be
added as well as multiple class/target attributes. See the configuration type documentation for
more details.

Class hierarchy: cSmileComponent → cDataSink → cArffSink

Configuration options:

reader = <object of type ‘cDataReader’> See the documentation of ‘cDataReader’ for
more information (section 3.3.2). The configuration of the cDataReader sub-component,
which handles the dataMemory interface for reading of input

blocksize = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (overwrites blocksize sec, if set).

blocksizeR = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (this overwrites blocksize and
blocksize sec!) (this option is provided for compatibility only... it is exactly the same as
‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds.

blocksizeR sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds (this overwrites blocksize sec!) (this
option is provided for compatibility only... it is exactly the same as ‘blocksize’).

filename = <string> [Default: ‘smileoutput.arff’]
The filename of the ARFF file to write to.

append = <numeric> [Default: 0]
1 = append to an existing file, or create a new file; 0 = overwrite an existing file, or create
a new file.

relation = <string> [Default: ‘smile’]
The name of the ARFF relation (@relation tag)

3.3. COMPONENT DESCRIPTION 53

instanceBase = <string> [Default: ‘’]
If this string is not empty, cArffSink prints an instance name attribute <instanceBase Nr>,
where Nr is the number (continuous index) of the current instance.

instanceName = <string> [Default: ‘’]
If this string is not empty, cArffSink prints an instance name attribute <instanceName>
for all instances.

number = <numeric> [Default: 1]
‘Synonym’ for the ‘frameIndex’ option: 1 = print an instance number (= frameIndex)
attribute (continuous index) (1/0 = yes/no).

timestamp = <numeric> [Default: 1]
‘Synonym’ for the ‘frameTime’ option: 1 = print a timestamp (=frameTime) attribute
(1/0 = yes/no)

frameIndex = <numeric> [Default: 1]
1 = print an instance number (= frameIndex) attribute (continuous index) (1/0 = yes/no)
(same as ‘number’ option)

frameTime = <numeric> [Default: 1]
1 = print a timestamp (=frameTime) attribute (1/0 = yes/no) (same as ‘timestamp’
option)

class[] = <object of type ‘arffClass’> This is an array defining the optional class target
attributes (grund-truths that you want to have included in your arff file along with your
features). It is an array for multiple targets/classes. See also the ‘target’ array.

class[].name = <string> [Default: ‘class’]
The name of the target attribute.

class[].type = <string> [Default: ‘numeric’]
The type of the target attribute: ’numeric’, ’string’, or nominal (= list of classes, enclosed
in).

target[] = <object of type ‘arffTarget’> The ground truth targets (classes) for each target
(class) attribute.

target[].instance[] = <string> [Default: ‘’]
An array containing a target for each instance.

target[].all = <string> [Default: ‘’]
Assigns this one target to all processed instances. You can use this option if you pass only
one instance to cArffSink when openSMILE is run. (This option is used by a lot batch
feature extraction scripts)

cCsvSink

Description: This component exports data in CSV (comma-separated-value) format used in
many spreadsheet applications. As the first line of the CSV file a header line may be printed,
which contains a delimiter separated list of field names of the output values. You can also
use this to output files which can be read by gnuplot, if you use the value ‘<space>’ for the
‘delimChar’ option.

54 CHAPTER 3. REFERENCE SECTION

Class hierarchy: cSmileComponent → cDataSink → cCsvSink

Configuration options:

reader = <object of type ‘cDataReader’> See the documentation of ‘cDataReader’ for
more information (section 3.3.2). The configuration of the cDataReader sub-component,
which handles the dataMemory interface for reading of input

blocksize = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (overwrites blocksize sec, if set).

blocksizeR = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (this overwrites blocksize and
blocksize sec!) (this option is provided for compatibility only... it is exactly the same as
‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds.

blocksizeR sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds (this overwrites blocksize sec!) (this
option is provided for compatibility only... it is exactly the same as ‘blocksize’).

filename = <string> [Default: ‘smileoutput.csv’]
The CSV file to write to

delimChar = <char> [Default: ‘;’]
The column delimiter character to use (usually ’,’ or ’;’), only 1 character is allowed.
Special characters are represented by the following strings: <space> (a single space), and
<tab> (a single tab).

append = <numeric> [Default: 0]
1 = append to an existing file, or create a new file; 0 = overwrite an existing file, or create
a new file

timestamp = <numeric> [Default: 1]
1 = print a timestamp attribute for each output frame (1/0 = yes/no)

number = <numeric> [Default: 1]
1 = print an instance number (= frameIndex) attribute for each output frame (1/0 =
yes/no)

printHeader = <numeric> [Default: 1]
1 = print a header line as the first line in the CSV file. This line contains the attribute
names separated by the delimiter character.

cDatadumpSink

Description: This component writes data to a raw binary file (e.g. for Matlab import). The
binary file consists of 32-bit float values representing the data values, concatenated frame by
frame along the time axis. The first two float values in the file resemble the file header, an thus
indicate the dimension of the matrix (1: size of frames, 2: number of frames in file). The total
file size in bytes is thus <size of frames> x <number of frames> x 4 + 2.

3.3. COMPONENT DESCRIPTION 55

Class hierarchy: cSmileComponent → cDataSink → cDatadumpSink

Configuration options:

reader = <object of type ‘cDataReader’> See the documentation of ‘cDataReader’ for
more information (section 3.3.2). The configuration of the cDataReader sub-component,
which handles the dataMemory interface for reading of input

blocksize = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (overwrites blocksize sec, if set).

blocksizeR = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (this overwrites blocksize and
blocksize sec!) (this option is provided for compatibility only... it is exactly the same as
‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds.

blocksizeR sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds (this overwrites blocksize sec!) (this
option is provided for compatibility only... it is exactly the same as ‘blocksize’).

filename = <string> [Default: ‘datadump.dat’]
The filename of the output file (if it doesn’t exist it will be created).

append = <numeric> [Default: 0]
1 = append to an existing file, or create a new file; 0 = overwrite an existing file, or create
a new file.

cHtkSink

Description: This component writes data to a binary HTK parameter file.

Class hierarchy: cSmileComponent → cDataSink → cHtkSink

Configuration options:

reader = <object of type ‘cDataReader’> See the documentation of ‘cDataReader’ for
more information (section 3.3.2). The configuration of the cDataReader sub-component,
which handles the dataMemory interface for reading of input

blocksize = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (overwrites blocksize sec, if set).

blocksizeR = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (this overwrites blocksize and
blocksize sec!) (this option is provided for compatibility only... it is exactly the same as
‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds.

56 CHAPTER 3. REFERENCE SECTION

blocksizeR sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds (this overwrites blocksize sec!) (this
option is provided for compatibility only... it is exactly the same as ‘blocksize’).

filename = <string> [Default: ‘smileoutput.htk’]
HTK parameter file to write to.

append = <numeric> [Default: 0]
1 = append to existing file (0 = don’t append).

parmKind = <numeric> [Default: 9]
HTK parmKind header field. Available target kinds (for details see the HTK book):
0=WAVEFORM, 1=LPC, 2=LPREFC, 3=LPCEPSTRA, 4=LPDELCEP, 5=IREFC, 6=MFCC,
7=FBANK (log), 8=MELSPEC (linear), 9=USER, 10=DISCRETE, 11=PLPCC). Avail-
able qualifiers (they are added to the target kind value): 64= E (log energy), 128= N,
256= D, 512= A, 1024= C, 2048= Z, 4096= K, 8192= 0 (zero’th coefficient appended))

cLibsvmSink

Description: This component writes data to a text file in LibSVM feature file format. For the
‘on-the-fly’ classification component see ‘cLibsvmLiveSink’ (section 3.3.5).

Class hierarchy: cSmileComponent → cDataSink → cLibsvmSink

Configuration options:

reader = <object of type ‘cDataReader’> See the documentation of ‘cDataReader’ for
more information (section 3.3.2). The configuration of the cDataReader sub-component,
which handles the dataMemory interface for reading of input

blocksize = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (overwrites blocksize sec, if set).

blocksizeR = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (this overwrites blocksize and
blocksize sec!) (this option is provided for compatibility only... it is exactly the same as
‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds.

blocksizeR sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds (this overwrites blocksize sec!) (this
option is provided for compatibility only... it is exactly the same as ‘blocksize’).

filename = <string> [Default: ‘smileoutput.lsvm’]
Output filename.

append = <numeric> [Default: 0]
Whether to append to an existing file or overwrite it (1/0 = append/overwrite).

timestamp = <numeric> [Default: 1]
1 = print a timestamp attribute (0 = don’t print it).

3.3. COMPONENT DESCRIPTION 57

instanceBase = <string> [Default: ‘’]
If not empty, print instance name attribute <instanceBase Nr>

instanceName = <string> [Default: ‘’]
If not empty, print instance name attribute <instanceName>

class[] = <string> [Default: ‘classX’]
Optional definition of class-name strings (array for multiple classes; the array size defines
the number of class columns which are appended to the CSV file). This allows for passing
ground-truth information directly on the command-line and makes post-editing of feature
files obsolete.

targetNum[] = <numeric> [Default: 0]
Targets/Ground truths (as numbers/indices) for each instance.

targetStr[] = <string> [Default: ‘classX’]
Targets/Ground truths (as strings) for each instance.

targetNumAll[] = <numeric> [Default: 0]
Target/Ground truth (as numbers/indices) for all instances.

targetStrAll[] = <string> [Default: ‘classX’]
Target/Ground truth (as strings) for all instances.

cNullSink

Description: This component reads data vectors from the data memory and ‘destroys’ them,
i.e. does not write them anywhere.

Class hierarchy: cSmileComponent → cDataSink → cNullSink

Configuration options:

reader = <object of type ‘cDataReader’> See the documentation of ‘cDataReader’ for
more information (section 3.3.2). The configuration of the cDataReader sub-component,
which handles the dataMemory interface for reading of input

blocksize = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (overwrites blocksize sec, if set).

blocksizeR = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (this overwrites blocksize and
blocksize sec!) (this option is provided for compatibility only... it is exactly the same as
‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds.

blocksizeR sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds (this overwrites blocksize sec!) (this
option is provided for compatibility only... it is exactly the same as ‘blocksize’).

58 CHAPTER 3. REFERENCE SECTION

cPortaudioSink

Description: This component handles live audio playback via the PortAudio library and the
system sound-card. In order to use this component, you must have a SMILExtract binary linked
against the PortAudio library. You can very this, if you run SMILExtract -H cPortaudioSink.
If you see help on the configuration options of this component, your binary is linked against
PortAudio. If not, then please refer to section 2.2 for instructions on how to build from the
source with PortAudio support.

Class hierarchy: cSmileComponent → cDataSource → cPortaudioSink

Configuration options:

reader = <object of type ‘cDataReader’> See the documentation of ‘cDataReader’ for
more information (section 3.3.2). The configuration of the cDataReader sub-component,
which handles the dataMemory interface for reading of input

blocksize = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (overwrites blocksize sec, if set).

blocksizeR = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (this overwrites blocksize and
blocksize sec!) (this option is provided for compatibility only... it is exactly the same as
‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds.

blocksizeR sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds (this overwrites blocksize sec!) (this
option is provided for compatibility only... it is exactly the same as ‘blocksize’).

monoMixdown = <numeric> [Default: 0]
1 = mix down all channels to 1 mono channel.

device = <numeric> [Default: -1]
The ID of the PortAudio device to use (device number).

listDevices = <numeric> [Default: 0]
(1/0=yes/no) list available portaudio devices during initialisation phase.

sampleRate = <numeric> [Default: 0]
Force output sample rate to the given value (0=determine sample rate from input level).

audioBuffersize = <numeric> [Default: 1000]
Set the size of port the audio recording buffer in samples (overwrites audioBuffersize sec,
if set).

audioBuffersize sec = <numeric> [Default: 0.05]
The size of the port audio recording buffer in seconds.

3.3. COMPONENT DESCRIPTION 59

cWaveSink

Description: This component saves data to an uncompressed PCM WAVE file.

Class hierarchy: cSmileComponent → cDataSink → cWaveSink

Configuration options:

reader = <object of type ‘cDataReader’> See the documentation of ‘cDataReader’ for
more information (section 3.3.2). The configuration of the cDataReader sub-component,
which handles the dataMemory interface for reading of input

blocksize = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (overwrites blocksize sec, if set).

blocksizeR = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (this overwrites blocksize and
blocksize sec!) (this option is provided for compatibility only... it is exactly the same as
‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds.

blocksizeR sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds (this overwrites blocksize sec!) (this
option is provided for compatibility only... it is exactly the same as ‘blocksize’).

filename = <string> [Default: ‘output.wav’]
The filename of the PCM wave file to write data to

sampleFormat = <string> [Default: ‘16bit’]
openSMILE uses float for all data internally. Thus you must specify your desired sample
format for the wave files here. Available formats:

8bit 8-bit signed

16bit 16-bit signed

24bit 24-bit signed (packed in 4 bytes)

24bitp 24-bit signed packed in 3 bytes

32bit 32-bit signed integer

float 32-bit float (assumes sample value range -1...+1)

cWaveSinkCut

Description: This component writes data to uncompressed PCM WAVE files. Only chunks,
based on timings received via smile messages are written to files. The files may have consecutive
numbers appended to the file name.

Class hierarchy: cSmileComponent → cDataSink → cWaveSinkCut

Configuration options:

reader = <object of type ‘cDataReader’> See the documentation of ‘cDataReader’ for
more information (section 3.3.2). The configuration of the cDataReader sub-component,
which handles the dataMemory interface for reading of input

60 CHAPTER 3. REFERENCE SECTION

blocksize = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (overwrites blocksize sec, if set).

blocksizeR = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (this overwrites blocksize and
blocksize sec!) (this option is provided for compatibility only... it is exactly the same as
‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds.

blocksizeR sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds (this overwrites blocksize sec!) (this
option is provided for compatibility only... it is exactly the same as ‘blocksize’).

fileBase = <string> [Default: ‘output segment ’]
The base of the wave file name, if writing multiple output files (multiOut=1), or else the
filename of the wave file to write to.

fileExtension = <string> [Default: ‘.wav’]
The file extension to use when writing multiple output files (multiOut=1), else this option
is ignored (the extension is set via ’fileBase’ then which specifies the full file name).

fileNameFormatString = <string> [Default: ‘%s%04d%s’]
Specifies how the filename will be formatted (printf compatible syntax, three parame-
ters are available in the given order: fileBase (string), current index (integer), fileEx-
tension (string)), the default should be reasonable, it generates filenames such as ’out-
put segment XXXX.wav’.

startIndex = <numeric> [Default: 1]
The index of the first file for consecutive numbering of output files (if multiOut=1).

preSil = <numeric> [Default: 0.2]
Specifies the amount of silence at the turn beginning in seconds, i.e. the lag of the turn
detector. This is the length of the data that will be added to the current segment prior to
the turn start time received in the message from the turn detector component.

postSil = <numeric> [Default: 0.3]
Specifies the amount of silence at the turn end in seconds. This is the length of the data
that will be added to the current segment after to the turn end time received in the message
from the turn detector component.

multiOut = <numeric> [Default: 1]
1 = enable multiple file mode, i.e. multiple files segmented by turnStart/turnEnd messages
; 0 = write all frames (only between turnStart/turnEnd messages) concatenated to one
file, i.e. effectively filtering out non-turn audio.

sampleFormat = <string> [Default: ‘16bit’]
openSMILE uses float for all data internally. Thus you must specify your desired sample
format for the wave files here. Available formats:

8bit 8-bit signed

3.3. COMPONENT DESCRIPTION 61

16bit 16-bit signed

24bit 24-bit signed (packed in 4 bytes)

24bitp 24-bit signed packed in 3 bytes

32bit 32-bit signed integer

float 32-bit float (assumes sample value range -1...+1)

3.3.5 Live data sinks (classifiers)

This section contains the live data sink components (e.g. classifiers).

cLibsvmLiveSink

Description: This component classifies data frames ‘on-the-fly’ using the LibSVM library.
Loading of ASCII and binary LibSVM models is supported (binary models are a LibSVM ex-
tension currently only included and distributed with openSMILE), as well as applying LibSVM
scale files and openSMILE feature selection lists.

Class hierarchy: cSmileComponent → cDataSink → cLibsvmLiveSink

Configuration options:

reader = <object of type ‘cDataReader’> See the documentation of ‘cDataReader’ for
more information (section 3.3.2). The configuration of the cDataReader sub-component,
which handles the dataMemory interface for reading of input

blocksize = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (overwrites blocksize sec, if set).

blocksizeR = <numeric> [Default: 0]
The size of the data blocks to read at once, in frames (this overwrites blocksize and
blocksize sec!) (this option is provided for compatibility only... it is exactly the same as
‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds.

blocksizeR sec = <numeric> [Default: 0]
The size of the data blocks to read at once, in seconds (this overwrites blocksize sec!) (this
option is provided for compatibility only... it is exactly the same as ‘blocksize’).

model[] = <string> [Default: ‘svm.model’]
LibSVM model file(s) to load. When loading multiple models, the currently active model,
scaling, and feature selection, can be changed by other components via smile messages.

scale[] = <string> [Default: ‘svm.scale’]
LibSVM scale file(s) to load. When loading multiple models, the currently active model,
scaling, and feature selection, can be changed by other components via smile messages.

fselection[] = <string> [Default: ‘(null)’]
Feature selection file(s) to apply (leave empty to use all features). The feature selection
files must contain the exact names of the selected features, one feature per line. When
loading multiple models, the currently active model, scaling, and feature selection, can be
changed by other components via smile messages.

62 CHAPTER 3. REFERENCE SECTION

classes[] = <string> [Default: ‘(null)’]
Class name lookup file(s), which map the libsvm class indices to actual class names (leave
empty to display libsvm class numbers/indices) [note: currently only one class name
lookup file is supported, i.e. only the first file in the array is loaded!].

predictProbability = <numeric> [Default: 0]
1 = predict class probabilities (confidences) (0 = no). The loaded model(s) must support
probability inference.

printResult = <numeric> [Default: 0]
1 = print the classification/regression result to the console.

resultRecp = <string> [Default: ‘(null)’]
A list of component(s) to send the ‘classificationResult’ smile messages to (use , to separate
multiple recipients). Leave blank (NULL) to not send any messages.

resultMessageName = <string> [Default: ‘svm result’]
Freely definable name that is sent with ‘classificationResult’ message. This name can be
used to distinguish the messages when multiple classifiers for different tasks are present.

forceScale = <numeric> [Default: 1]
1 = for the input values, enforce the range specified in the scale file by clipping out-of-range
values (after scaling).

lag = <numeric> [Default: 0]
If > 0, read data <lag> frames behind (should always remain 0 for this component, to
classify the most recent frames).

3.3.6 Low-level features and signal processing

This section contains all low-level feature extractors and various signal processing components.

cAcf

Description: This component computes the autocorrelation function (ACF) by squaring a
magnitude spectrum and applying an inverse Fast Fourier Transform. This component mus
read from a level containing *only* FFT magnitudes in a single field. Use the ‘cTransformFFT’
(section 3.3.6) and ‘cFFTmagphase’ (section 3.3.6) components to compute the magnitude spec-
trum from PCM frames. Computation of the Cepstrum is also supported (this applies a log()
function to the magnitude spectra).

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cAcf

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

3.3. COMPONENT DESCRIPTION 63

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘acf’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

usePower = <numeric> [Default: 1]
1 = square input values; you must leave this at default 1, when using FFT magnitude as
input.

cepstrum = <numeric> [Default: 0]
1 = compute the Cepstrum instead of the ACF. This applies a log() to the magnitudes
before transforming from the spectral domain back to the time domain. You might want
to set ‘nameAppend=cepstrum’ when using this option.

64 CHAPTER 3. REFERENCE SECTION

cAmdf

Description: This component computes the Average Magnitude Difference Function (AMDF)
for each input frame. Various methods for padding or warping at the border exist.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cAmdf

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘amdf’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed

3.3. COMPONENT DESCRIPTION 65

if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

nLag = <numeric> [Default: 0]
If nLag > 0, compute the AMDF up to maximum lag ’nLag’ (or maximum possible lag
limited by the frame size). If nLag=0, then always the maximum frame size will be used
(this is the default). If nLag < 0, then nLag=framesize/((-1)*nLag) will be used.

method = <string> [Default: ‘limit’]
The AMDF computation method (i.e. the handling of border conditions):

limit compute the AMDF only in regions where the shifted windows overlap

warp compute a cyclical AMDF by warping of the input

zeropad zero-pad the missing samples

invert = <numeric> [Default: 0]
1 = invert the AMDF output values (literally ‘1 minus AMDF’), i.e. so that the behaviour
of the AMDF output corresponds more to that of an autocorrelation function.

cBuffer

Description: This resembles a simple data buffer. Its only function is to copy data from one
(or more) level(s) to another level. When specifying more than one input level, this component
can be used to concatenate frames.

Class hierarchy: cSmileComponent → cDataProcessor → cBuffer

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

66 CHAPTER 3. REFERENCE SECTION

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

vecCopy = <numeric> [Default: 1]
1 = copy vectors/frames one by one
0 = copy a window/matrix of size ‘copyBuf’

copyBuf = <numeric> [Default: 1024]
The size of the copy-at-once buffer in frames, if ‘vecCopy’=1

cCens

Description: This component computes CENS (energy normalised and smoothed discretised
Chroma features) from raw Chroma features generated by the ‘cChroma’ (section 3.3.6) com-
ponent.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cCens

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

3.3. COMPONENT DESCRIPTION 67

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘chroma’]
A string suffix to append to the input field names.

copyInputName = <numeric> [Default: 0]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

window = <string> [Default: ‘han’]
The window function to use for temporal smoothing of discretised Chroma features; one
of these: han (Hanning), ham (Hamming), bar (Bartlett)

downsampleRatio = <numeric> [Default: 10]
The integer ratio at which to downsample the resulting sequence of vectors. I.e. a value of
10 will average 10 frames and output 1 CENS frame. This value should be smaller than
winlength (it need not, though).

winlength = <numeric> [Default: 41]
The length of the CENS smoothing window (see ‘window’ option), in frames.

winlength sec = <numeric> [Default: 0.41]
The length of the CENS smoothing window, in seconds. This will be rounded upwards
(ceil) to the closest length in frames. It overrides winlength, if set.

l2norm = <numeric> [Default: 1]
1/0 = enable/disable normalisation of CENS output vectors by their L2-norm.

cChroma

Description: This component computes CHROMA features from a semi-tone scaled spectrum
generated by the ‘cTonespec’ (section 3.3.6) component.

68 CHAPTER 3. REFERENCE SECTION

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cChroma

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘chroma’]
A string suffix to append to the input field names.

copyInputName = <numeric> [Default: 0]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

octaveSize = <numeric> [Default: 12]
The size of an octave, i.e. the number of output bins, or the interval to which the input
bins are mapped via warping.

3.3. COMPONENT DESCRIPTION 69

cChordFeatures

Description: Chord features (computed from Chroma features (see section 3.3.6)). FIXME:
write extended feature documentation.

Class hierarchy: cSmileComponent→ cDataProcessor→ cVectorProcessor→ cChordFeatures

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘chordbasedfeature’]
A string suffix to append to the input field names.

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

70 CHAPTER 3. REFERENCE SECTION

cChromaFeatures

Description: Chroma-based features (computed from Chroma features (see section 3.3.6)).
FIXME: write extended feature documentation. Warning: this component does not compute
Chroma features (see the cChroma component for this)!

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cChromaFea-
tures

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘chromabasedfeature’]
A string suffix to append to the input field names.

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each

3.3. COMPONENT DESCRIPTION 71

input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

cContourSmoother

Description: This component smooths data contours by applying a moving average filter of
configurable length.

Class hierarchy: cSmileComponent→ cDataProcessor→ cWindowProcessor→ cContourSmoother

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘sma’]
A string suffix to append to the input field names.

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

72 CHAPTER 3. REFERENCE SECTION

noPostEOIprocessing = <numeric> [Default: 0]
1 = do not process incomplete windows at the end of the input.

smaWin = <numeric> [Default: 3]
The size of the moving average window in frames. A larger window means more smoothing.

cDataSelector

Description: This component copies data from one level to another, thereby selecting frame
fields and elements by their element/field name (use this for feature selection, if you have a list
of selected features in a text file, where each line contains the name of exactly one feature).

Class hierarchy: cSmileComponent → cDataProcessor → cDataSelector

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

3.3. COMPONENT DESCRIPTION 73

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

selFile = <string> [Default: ‘(null)’]
The name of the data selection file to load. The file is a text file containing one element
name per line of the elements which should be selected (case-sensitive!). (Note: the first
two lines make up a header; the first line always contains ‘str’, the second line is number
of features in list, next each line contains one feature name of the features to select)

selected[] = <string> [Default: ‘(null)’]
This is an alternative to loading ‘selFile’. An array of exact (case-sensitive) names of
features / data elements to select.

newNames[] = <string> [Default: ‘(null)’]
An array of new names to assign to the selected features / data elements (optional). The
order thereby corresponds to the order of data element names in the input.

elementMode = <numeric> [Default: 1]
1 = select elements exactly as given in the ‘selected’ array or in ‘selFile’ (in this case, only
full element names are allowed (i.e. mfcc[1], mfcc[2] instead of mfcc, mfcc[], or mfcc[1-2].
0 = automatically copy arrays or partial arrays, e.g. if field[1-4] or only ‘field’ is given as
name in the selection array/file, then the partial (1-4) or complete field will be copied to
the output.

cDbA

Description: This component performs dB(X) (dB(A),dB(B),dB(C),...) equal loudness weight-
ing of FFT bin magnitudes. Currently only dB(A) weighting is implemented.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cDbA

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

74 CHAPTER 3. REFERENCE SECTION

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

curve = <char> [Default: ‘A’]
One character, which specifies the type of the curve to use (supported: A ; soon supported:
B,C).

usePower = <numeric> [Default: 1]
1 = square the input magnitudes before multiplying with the db(X) weighting function
(the output will then be a dB(X) weighted power spectrum).

cDeltaRegression

Description: This component computes delta regression coefficients from a data contour (xt)
using the regression equation 3.1, where W specifies half the size of the window to be used for
computation of the regression coefficients. The default is W = 2. In order to provide HTK
compatibility, equation 3.1 was implemented as described in [YEG+06].

dt =
∑W

i=1 i ·
(
xt+i − xt−i

)
2
∑W

i=1 i
2

(3.1)

In order to compute regression coefficients of an order higher than one, you must instantiate
multiple cDeltaRegression components and connect them in a chain, where one reads from the
output of the previous one.

Class hierarchy: cSmileComponent → cDataProcessor → cWindowProcessor → cDeltaRe-
gression

3.3. COMPONENT DESCRIPTION 75

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘de’]
A string suffix to append to the input field names.

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

noPostEOIprocessing = <numeric> [Default: 0]
1 = do not process incomplete windows at the end of the input.

deltawin = <numeric> [Default: 2]
(= W): specifies the size of half of the delta regression window (If set to 0, a simple
difference d[n] = x[n]− x[n− 1] will be computed).

76 CHAPTER 3. REFERENCE SECTION

cEnergy

Description: This component computes logarithmic (log) and root-mean-square (rms) signal
energy from PCM frames (size N , values xn, n = 1..N).

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cEnergy

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘energy’]
A string suffix to append to the input field names.

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed

3.3. COMPONENT DESCRIPTION 77

if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

htkcompatible = <numeric> [Default: 0]
If set to 1, enable HTK compatible log-energy output (this will output log-energy ONLY!
no rms energy, disregarding the ‘rms’ option).

rms = <numeric> [Default: 1]
1/0 = on/off: output of root-mean-square (RMS) energy Er (frame size is N):

Er =

√(
N∑

n=0
x2

n

)
/N .

log = <numeric> [Default: 1]

1/0 = on/off output logarithmic energy (log-energy), El. El = log
[(

N∑
n=0

x2
n

)
/N

]
. The

argument of the log function is floored to 8.674676e-019. The output has the unit of ‘neper’
(which is similar to decibel, with the difference that the natural logarithm (base e) is used
instead of the base-10 logarithm).

cFFTmagphase

Description: This component computes the magnitudes and the phases for each array in the
input level (it thereby assumes that the arrays contain complex numbers with real and imaginary
parts alternating, as computed by the cTransformFFT (section 3.3.6) component).

Class hierarchy: cSmileComponent→ cDataProcessor→ cVectorProcessor→ cFFTmagphase

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

78 CHAPTER 3. REFERENCE SECTION

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

inverse = <numeric> [Default: 0]
If set to 1, converts magnitude and phase input data to complex frequency domain data.

magnitude = <numeric> [Default: 1]
1/0 = compute magnitude yes/no (or use magnitude as input to inverse transformation,
must be enabled for inverse).

phase = <numeric> [Default: 0]
1/0 = compute phase yes/no (or use phase as input to inverse transformation, must be
enabled for inverse).

cFormantLpc

Description: This component computes formant frequencies and bandwidths by solving for
the roots of the LPC coefficient polynomial. The component requires lpc coefficients as input,
which are generated by the cLpc component (section 3.3.6. The formant trajectories can be
smoothed by the cFormantSmoother (section 3.3.6) component.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cFormantLpc

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

3.3. COMPONENT DESCRIPTION 79

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 0]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

nFormants = <numeric> [Default: -1]
The maximum number of formants to detect (set to < 0 to automatically use the maximum
number of possible formants (nLpcCoeff - 1).

saveFormants = <numeric> [Default: 1]
If set to 1, output formant frequencies [field name: formantFreqLpc].

saveIntensity = <numeric> [Default: 0]
If set to 1, output formant frame intensity [field name: formantFrameIntensity].

80 CHAPTER 3. REFERENCE SECTION

saveNumberOfValidFormants = <numeric> [Default: 0]
If set to 1, output the number of valid formants [field name: nFormants].

saveBandwidths = <numeric> [Default: 0]
If set to 1, output formant bandwidths [field name: formantBandwidthLpc].

minF = <numeric> [Default: 50]
The minimum frequency of the formant frequency search range (in Hz).

maxF = <numeric> [Default: 5500]
The maximum detectable formant frequency (in Hz).

useLpSpec = <numeric> [Default: 0]
Experimental option: If set to 1, computes the formants from peaks found in the ‘lpSpec-
trum’ field instead of root solving the lpc coefficient polynomial.

medianFilter = <numeric> [Default: 0]
1 = enable formant post processing by a median filter of length ‘medianFilter’ (recom-
mended: 5) (will be rounded up to the next odd number); 0 to disable median filter.

octaveCorrection = <numeric> [Default: 0]
Experimental option:
1 = prevent formant octave jumps (esp. when ‘medianFilter’ is enabled) by employing
simple ‘octave’ correction.
0 = no correction.

cFormantSmoother

Description: This component performs temporal formant smoothing.
Input: candidates produced by a formantXXX component (e.g. formantLpc, section 3.3.6) and(!)
– appended – an F0final or voicing field (i.e. a single element field, that has a value of 0 for
unvoiced frames and a non-zero value for voiced frames).
Output: Smoothed formant frequency contours.

Class hierarchy: cSmileComponent→ cDataProcessor→ cVectorProcessor→ cFormantSmoother

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

3.3. COMPONENT DESCRIPTION 81

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 0]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

medianFilter0 = <numeric> [Default: 0]
If > 0, applies median filtering of candidates as the first processing step; the filter length
is the value of ‘medianFilter0’ if > 0.

postSmoothing = <numeric> [Default: 0]
If > 0, applies post processing (median and spike remover) over ‘postSmoothing’ frames
(0 = no smoothing or use default determined by ‘postSmoothingMethod’).

postSmoothingMethod = <string> [Default: ‘simple’]
The post processing method to use. One of the following:

none disable post smoothing

simple simple post smoothing using only one frame delay (will smooth out one frame
octave spikes)

median apply a median filter to the output values (length = value of ‘postProcessing’
option)

82 CHAPTER 3. REFERENCE SECTION

F0field = <string> [Default: ‘F0final’]
The input field containing either F0final or voicingFinalClipped (i.e. a single element
field, that has a value of 0 for unvoiced frames and a non-zero value for voiced frames).
The name you give here is a partial name, i.e. the actual field names will be matched
against *‘F0field’*). Note: do not use the *Env (envelope) fields here, they are non-zero
for unvoiced frames!

formantBandwidthField = <string> [Default: ‘formantBand’]
The input field containing formant bandwidths (the name you give here is a partial name,
i.e. the actual field names will be matched against *formantBandwidthField*).

formantFreqField = <string> [Default: ‘formantFreq’]
The input field containing formant frequencies (the name you give here is a partial name,
i.e. the actual field names will be matched against *formantFreqField*)

formantFrameIntensField = <string> [Default: ‘formantFrameIntens’]
The input field containing formant frame intensity (the name you give here is a partial
name, i.e. the actual field names will be matched against *formantFrameIntensField*).

intensity = <numeric> [Default: 0]
If set to 1, output formant intensity.

nFormants = <numeric> [Default: 5]
This sets the maximum number of smoothed formants to output (set to 0 to disable the
output of formants and bandwidths).

formants = <numeric> [Default: 1]
If set to 1, output formant frequencies (also see ‘nFormants’ option).

bandwidths = <numeric> [Default: 0]
If set to 1, output formant bandwidths (also see ‘nFormants’ option).

saveEnvs = <numeric> [Default: 0]
If set to 1, output formant frequency and bandwidth envelopes instead(!) of the actual
data (i.e. the last value of a voiced frame is used for the following unvoiced frames).

no0f0 = <numeric> [Default: 0]
‘no zero F0’: if set to 1, output data only when F0 > 0, i.e. a voiced frame is detected. This
may cause problem with some functionals and framer components, which don’t support
this variable length data yet.

cFramer

Description: This component creates frames from single dimensional input stream. It is
possible to specify the frame step and frame size independently, thus allowing for overlapping
frames or non continuous frames. Creating a single frame from the full-input (at the end of
the input, when doing off-line processing), is also supported. Creating frames based on smile
messages from other components is possible. Creating frames based on an off-line file list (e.g.
a text file) is partially in the code but not yet finished.

Class hierarchy: cSmileComponent → cDataProcessor → cWinToVecProcessor → cFramer

Configuration options:

3.3. COMPONENT DESCRIPTION 83

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty)

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

frameMode = <string> [Default: ‘fixed’]
Specifies how to create frames:

fixed fixed frame size, given via the ‘frameSize’ option

full creates one frame at the end of the input only (off-line processing)

variable via smile message from another component (such as cTurnDetector (section 3.3.6)

list frame times list in config file (‘frameList’ option), or in external text file (‘frameList-
File’ option). Currently: UNIMPLEMENTED.

frameListFile = <string> [Default: ‘(null)’]
Filename of a file with a list of frame intervals to load. This should be a text file with
a comma separated list of intervals on a single line: 1-10,11-20, etc., if no interval is
specified, i.e. no – is found then consecutive frames with the given number being the frame
length are assumed; first index is 0; use the suffix “s” after the numbers to specify intervals
in seconds (e.g. 0s-2.5s); use an ‘E’ instead of a number for ‘end of sequence’).

frameList = <string> [Default: ‘(null)’]
The list of frame intervals specified directly in the configuration file. This should be a
string of comma separated list of intervals on a single line: 1-10,11-20, etc., if no interval
is specified, i.e. no – is found then consecutive frames with the given number being the
frame length are assumed; first index is 0; use the suffix “s” after the numbers to specify
intervals in seconds (e.g. 0s-2.5s); use an ‘E’ instead of a number for ‘end of sequence’).

frameSize = <numeric> [Default: 0.025]
The frame size in seconds (0.0 = full input, same as ‘frameMode=full’).

frameStep = <numeric> [Default: 0]
The frame step (frame sampling period) in seconds (0 = set to the same value as ‘frame-
Size’)

84 CHAPTER 3. REFERENCE SECTION

frameSizeFrames = <numeric> [Default: 0]
The frame size in input level frames (=samples for a pcm/wave input level) (overrides
frameSize, if set and > 0).

frameStepFrames = <numeric> [Default: 0]
The frame step in input level frames (=samples for a pcm/wave input level) (overrides
frameStep, if set and > 0).

frameCenter = <numeric> [Default: 0]
The frame center in seconds, i.e. where frames are sampled (0=left), see ‘frameCenterSpe-
cial’ for examples on how the frame center options affect the sampling of frames.

frameCenterFrames = <numeric> [Default: 0]
The frame sampling center in input level frames (overrides ‘frameCenter’, if set), (0=left),
see ‘frameCenterSpecial’ for examples on how the frame center options affect the sampling
of frames.

frameCenterSpecial = <string> [Default: ‘left’]
The frame sampling center (overrides the other ‘frameCenter’ options, if set). The available
special frame sampling points as strings are:

left = sample at the beginning of the frame (the first frame will be sampled from 0 to
frameSize)

mid = sample in the middle of the frame middle (the first frame will be sampled from
-frameSize/2 to frameSize/2; values at negative indices are padded with zeros)

right = sample at the end of the frame (the first frame will be sampled from -frameSize
to 0; values at negative indices are padded with zeros, i.e. the first frame will be all
0s)

noPostEOIprocessing = <numeric> [Default: 1]
1 = do not process incomplete windows at the end of the input, i.e. all created frames
have been sampled from segments that are exactly ‘frameSize’ in length. Excess data at
the end of the input will be discarded. This is only relevant for off-line processing.

cFullinputMean

Description: This component performs mean normalising on a data series. A 2-pass analysis
of the data is performed, which makes this component unusable for on-line analysis. In the first
pass, no output is produced and the mean value (over time) is computed for each input element.
In the second pass the mean vector is subtracted from all input frames, and the result is written
to the output data memory level.
Attention: Due to the 2-pass processing the input level must be large enough to hold the whole
data sequence.

Class hierarchy: cSmileComponent → cDataProcessor → cFullinputMean

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

3.3. COMPONENT DESCRIPTION 85

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

cIntensity

Description: This component computes simplified frame intensity (narrow band approxima-
tion). It expects unwindowed raw PCM frames as input. A Hamming window is internally
applied and the resulting signal is squared before applying loudness compression, etc.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cIntensity

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

86 CHAPTER 3. REFERENCE SECTION

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

intensity = <numeric> [Default: 1]
1 = enable the output of intensity I (mean of squared input values multiplied by a Hamming
window)

loudness = <numeric> [Default: 0]
1 = enable the output of loudness l : l = (I

I0
)0.3 where I0 = 0.000001 (I0 cannot be changed

at the moment, it is hard-coded).

cLpc

Description: This component computes linear predictive coding (LPC) coefficients from PCM
frames. Burg’s algorithm and the standard ACF/Durbin based method are implemented for lpc
coefficient computation. LPC filter coefficients, reflection coefficients, residual signal, and LP

3.3. COMPONENT DESCRIPTION 87

spectrum are supported.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cLpc

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

88 CHAPTER 3. REFERENCE SECTION

method = <string> [Default: ‘acf’]
This option sets the lpc method to use. Choose between: ’acf’ acf (autocorrelation) method
with Levinson-Durbin algorithm , ’burg’ Burg method (N. Anderson (1978))

p = <numeric> [Default: 8]
Predictor order (= number of lpc coefficients).

saveLPCoeff = <numeric> [Default: 1]
1 = save LP coefficients to output.

lpGain = <numeric> [Default: 0]
1 = save lpc gain (error) in output vector.

saveRefCoeff = <numeric> [Default: 0]
1 = save reflection coefficients to output.

residual = <numeric> [Default: 0]
1 = compute lpc residual signal and store in output frame.

forwardFilter = <numeric> [Default: 0]
1 = apply forward instead of inverse filter when computing residual.

lpSpectrum = <numeric> [Default: 0]
1 = compute lp spectrum using ‘lpSpecDeltaF’ as frequency resolution or ‘lpSpecBins’
bins.

lpSpecDeltaF = <numeric> [Default: 10]
Frequency resolution of lp spectrum (only applicable if ‘lpSpectrum=1’).

lpSpecBins = <numeric> [Default: 100]
Number of bins to compute lp spectrum for (overrides ‘lpSpecDeltaF’, only applicable if
‘lpSpectrum=1’).

cLsp

Description: This component computes LSP (line spectral pair frequencies, also known as
LSF) from LPC coefficients (cLpc, section 3.3.6) by partial factorisation of the LPC polynomial.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cLsp

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

3.3. COMPONENT DESCRIPTION 89

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 0]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

cMelspec

Description: This component computes an N-band Mel/Bark/Semitone-frequency spectrum
(critical band spectrum) by applying overlapping triangular filters equidistant on the Mel/Bark/Semitone-
frequency scale to an FFT magnitude spectrum (generated by the cFFTmagphase component,
section 3.3.6). You can use this critical band spectrum to generate MFCC with the cMfcc com-
ponent (section 3.3.6), or PLP and auditory spectra with the cPlp component (section 3.3.6).

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cMelspec

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

90 CHAPTER 3. REFERENCE SECTION

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

nBands = <numeric> [Default: 26]
The number of Mel/Bark/Semitone band filters the filterbank from ‘lofreq’ – ‘hifreq’ con-
tains.

lofreq = <numeric> [Default: 20]
The lower cut-off frequency of the filterbank (Hz).

hifreq = <numeric> [Default: 8000]
The upper cut-off frequency of the filterbank (Hz).

usePower = <numeric> [Default: 0]
Set this to 1, to use the power spectrum instead of magnitude spectrum, i.e. if this option
is set to 1, the input values are squared by the cMelspec component.

3.3. COMPONENT DESCRIPTION 91

showFbank = <numeric> [Default: 0]
If this is set to 1, the bandwidths and centre frequencies of the filters in the filterbank are
printed to openSMILE log output (console and/or file).

htkcompatible = <numeric> [Default: 1]
1 = enable htk compatible output (audio sample scaling -32767..+32767 instead of openS-
MILE’s -1.0..1.0).

inverse = <numeric> [Default: 0]
1 = compute fft magnitude spectrum from mel spectrum; Note that if this option is set,
’nBands’ specifies the number of fft bands to create! [NOT YET FULLY TESTED]

specScale = <string> [Default: ‘mel’]
The frequency scale to design the critical band filterbank in:

mel Mel-frequency scale (m = 1127 ln (1+f/700))

bark Bark scale approximation (Critical band rate z): z = [26.81 / (1.0 + 1960/f)] - 0.53

bark schroed = Bark scale approximation according to Schroeder (1977):

6 log

(
fHz
600 +

[(
fHz
600

)2
+ 1
]0

.5

)
bark speex = Bark scale approximation as used in the Speex codec package

semi = semi-tone scale with first note (0) = ‘firstNote’ (default 27.5 Hz)
(semitone=12*log(fHz/firstNote)/log(2)) [experimental]

log = logarithmic scale with base ‘logScaleBase’ (default = 2 , octave scale).

logScaleBase = <numeric> [Default: 2]
The base for log scales (a log base of 2.0 - the default - corresponds to an octave target
scale).

firstNote = <numeric> [Default: 27.5]
The first note (in Hz) for a semi-tone scale.

cMfcc

Description: This component computes Mel-frequency cepstral coefficients (MFCC) from a
critical band spectrum (see ‘cMelspec’, section 3.3.6). An i-DCT of type-II is used from trans-
formation from the spectral to the cepstral domain. Liftering of cepstral coefficients is supported.
HTK compatible values can be computed, if the ‘htkcompatible’ option is set to 1 in this com-
ponent and in the cMelspec component.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cMfcc

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

92 CHAPTER 3. REFERENCE SECTION

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

firstMfcc = <numeric> [Default: 1]
The first MFCC to compute.

lastMfcc = <numeric> [Default: 12]
The last MFCC to compute.

nMfcc = <numeric> [Default: 12]
Use this option to specify the number of MFCC, instead of specifying ‘lastMfcc’.

melfloor = <numeric> [Default: 1e-08]
The minimum value allowed for Mel-spectra when taking the log spectrum (this parameter
will be forced to 1.0 when htkcompatible=1)

3.3. COMPONENT DESCRIPTION 93

cepLifter = <numeric> [Default: 22]
Parameter for cepstral ‘liftering’, set this to 0.0 to disable cepstral liftering.

htkcompatible = <numeric> [Default: 1]
1 = append the 0-th coefficient at the end instead of placing it as the first element of the
output vector. This produces HTK compatible Mfcc output.

cMZcr

Description: This component computes these time signal properties: zero-crossing rate, mean-
crossing rate, dc offset, max/min value, and absolute maximum value of a PCM frame.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cMZcr

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

94 CHAPTER 3. REFERENCE SECTION

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

zcr = <numeric> [Default: 1]
(1/0=yes/no) compute zero-crossing rate (zcr).

mcr = <numeric> [Default: 1]
(1/0=yes/no) compute mean-crossing rate (mcr) (i.e. the rate at which a signal crosses its
mean, for signals with mean 0 this is identical to the zero-crossing rate).

amax = <numeric> [Default: 1]
(1/0=yes/no) enable output of the maximum absolute sample value.

maxmin = <numeric> [Default: 1]
(1/0=yes/no) enable output of the maximum and minimum sample values.

dc = <numeric> [Default: 0]
(1/0=yes/no) compute the DC-offset (= the arithmetic mean of input values).

cPitchACF

Description: This component computes the fundamental frequency and the probability of
voicing via an ACF/Cepstrum based method. The input must be an ACF field and a Cepstrum
field, concatenated exactly in this order. Both fields can be generated by a cAcf component
(section 3.3.6), each. Note: this component does not conform to the new pitch component
standard, as defined by the cPitchBase class.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cPitchACF

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

3.3. COMPONENT DESCRIPTION 95

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 0]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

maxPitch = <numeric> [Default: 500]
Maximum detectable fundamental frequency in Hz.

voiceProb = <numeric> [Default: 1]
1/0 = on/off: output of voicing probability.

voiceQual = <numeric> [Default: 0]
1/0 = on/off: output of fundamental frequency ‘quality’ (= ZCR of ACF).

HNR = <numeric> [Default: 1]
1/0 = on/off; output of log harmonics-to-noise ratio (HNR) computed from the ACF:
HNR = 10 · log ACF (T0)

ACF (0)−ACF (T0)

F0 = <numeric> [Default: 1]
1/0 = on/off: output of F0 (fundamental frequency , pitch) (Note: the F0 output is 0 in
unvoiced segments)

F0raw = <numeric> [Default: 0]
1/0 = on/off: output of raw F0 candidate without thresholding (i.e. forcing to 0) in
unvoiced segments.

96 CHAPTER 3. REFERENCE SECTION

F0env = <numeric> [Default: 0]
1/0 = on/off: output of F0 envelope (exponential decay smoothing) (Note: this differs from
the envelope computed by the cPitchBase descendant components, such as cPitchShs!)

voicingCutoff = <numeric> [Default: 0.55]
This sets the voicing probability threshold for pitch detection [0.0 - 1.0]. Frames with
voicing probability values above this threshold will be considered as voiced.

cPitchDirection

Description: This component reads pitch data, detects pseudo syllables, and computes pitch
direction estimates per (pseudo-)syllable. Thereby the classes falling, flat, and rising are dis-
tinguished. Required input fields: F0, F0env, and ‘loudness’ or ‘RMSenergy’. Thus, you must
concatenate data from a cPitchXXX component (cPitchSHS, cPitchACF, etc.) and a cEnergy
or cIntensity component.

Class hierarchy: cSmileComponent → cDataProcessor → cPitchDirection

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

3.3. COMPONENT DESCRIPTION 97

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

ltbs = <numeric> [Default: 0.2]
The size of the long-term average buffer in seconds.

stbs = <numeric> [Default: 0.05]
The size of the short-term average buffer in seconds.

directionMsgRecp = <string> [Default: ‘(null)’]
Recipient component(s) for per syllable event-based pitch direction message. (rise/fall/rise-
fall/fall-rise message are sent only if and as ofter as a such event occurs on a syllable)

speakingRateBsize = <numeric> [Default: 20]
The buffer size for computation of speaking rate.

F0direction = <numeric> [Default: 1]
1 = enable output of F0 direction as numeric value (fall: -1.0 / flat: 0.0 / rise: 1.0).

directionScore = <numeric> [Default: 1]
1 = enable output of F0 direction score (short term mean - long term mean).

speakingRate = <numeric> [Default: 0]
1 = enable output of current speaking rate in Hz (is is output for every frame, thus, a lot
of redundancy here).

F0avg = <numeric> [Default: 0]
1 = enable output of long term average F0.

F0smooth = <numeric> [Default: 0]
1 = enable output of exponentially smoothed F0.

onlyTurn = <numeric> [Default: 0]
1 = send pitch direction messages (directionMsgRecp) only during speech turns (voice
activity) (according to turnStart/turnEnd messages received from cTurnDetector).

turnStartMessage = <string> [Default: ‘turnStart’]
Use this option to define a custom message name for turn start messages, i.e. if you want
to use voice activity start/end messages instead.

turnEndMessage = <string> [Default: ‘turnEnd’]
Use this option to define a custom message name for turn end messages, i.e. if you want
to use voice activity start/end messages instead.

cPitchJitter

Description: This component computes Voice Quality parameters Jitter (pitch period devia-
tions) and Shimmer (pitch period amplitude deviations). It requires the raw PCM frames (gen-
erated by a cFramer component) and the corresponding fundamental frequency (F0) (cPitchACF

98 CHAPTER 3. REFERENCE SECTION

or cPitchSHS) as inputs.

Class hierarchy: cSmileComponent → cDataProcessor → cPitchJitter

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

F0reader = <object of type ‘cDataReader’> Configuration of the dataMemory reader sub-
component which is used to read the F0 estimate from a pitch component output (e.g.
cPitchShs). See the documentation of ‘cDataReader’ for more information (section 3.3.2).

F0field = <string> [Default: ‘F0final’]
The name of the field in ‘F0reader.dmLevel’ containing the F0 estimate (in Hz) (usually
F0final or F0raw).

3.3. COMPONENT DESCRIPTION 99

searchRangeRel = <numeric> [Default: 0.25]
The relative search range for period deviations (Jitter): maxT0, minT0 = (1.0 +/-
searchRangeRel)*T0

jitterLocal = <numeric> [Default: 0]
1 = enable computation of F0 jitter (period length variations). jitterLocal = the average
absolute difference between consecutive periods, divided by the average period length of
all periods in the frame.

jitterDDP = <numeric> [Default: 0]
1 = enable computation of F0 jitter (period length variations). jitterDDP = the average
absolute difference between consecutive differences between consecutive periods, divided
by the average period length of all periods in the frame.

jitterLocalEnv = <numeric> [Default: 0]
1 = compute envelope of jitterLocal (i.e. fill jitter values in unvoiced frames with value of
last voiced segment). Use this in conjunction with statistical functionals such as means.

jitterDDPEnv = <numeric> [Default: 0]
1 = compute envelope of jitterDDP (i.e. fill jitter values in unvoiced frames with value of
last voiced segment). Use this in conjunction with statistical functionals such as means.

shimmerLocal = <numeric> [Default: 0]
1 = enable computation of F0 shimmer (amplitude variations). shimmerLocal = the aver-
age absolute difference between the interpolated peak amplitudes of consecutive periods,
divided by the average peak amplitude of all periods in the frame.

shimmerLocalEnv = <numeric> [Default: 0]
1 = compute envelope of shimmerLocal (i.e. fill shimmer values in unvoiced frames with
value of last voiced segment). Use this in conjunction with statistical functionals such as
means.

onlyVoiced = <numeric> [Default: 0]
1 = produce output only for voiced frames. I.e. do not output 0 jitter/shimmer values
for unvoiced frames. WARNING: this option is not fully supported by the functionals
component, yet.

periodLengths = <numeric> [Default: 0]
1 = enable output of individual period lengths.

periodStarts = <numeric> [Default: 0]
1 = enable output of individual period start times.

cPitchShs

Description: This component computes the fundamental frequency via the Sub-Harmonic-
Sampling (SHS) method (this is related to the Harmonic Product Spectrum method).

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cPitchBase →
cPitchSHS

Configuration options:

100 CHAPTER 3. REFERENCE SECTION

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 0]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

maxPitch = <numeric> [Default: 620]
Maximum detectable pitch in Hz.

minPitch = <numeric> [Default: 52]
Minimum detectable pitch in Hz.

3.3. COMPONENT DESCRIPTION 101

nCandidates = <numeric> [Default: 3]
The number of F0 candidates to output [1-20] (0 disables output of candidates AND their
voicing probabilities)

scores = <numeric> [Default: 1]
1/0 = on/off: output of F0 candidates scores, if available.

voicing = <numeric> [Default: 1]
1/0 = on/off: output of voicing probability for F0 candidates.

F0C1 = <numeric> [Default: 0]
1/0 = on/off: output of raw best F0 candidate without thresholding (forcing to 0) in
unvoiced segments.

voicingC1 = <numeric> [Default: 0]
1/0 = on/off: output of output voicing (pseudo) probability for best candidate.

F0raw = <numeric> [Default: 0]
1/0 = on/off: output of raw F0 (best candidate), > 0 only for voiced segments (using
voicingCutoff threshold).

voicingClip = <numeric> [Default: 0]
1/0 = on/off: output of voicing of raw F0 (best candidate), > 0 only for voiced segments
(using voicingCutoff threshold).

voicingCutoff = <numeric> [Default: 0.75]
This sets the voicing (pseudo) probability threshold for pitch detection. Frames with
voicing probability values above this threshold will be considered as voiced.

inputFieldSearch = <string> [Default: ‘Mag logScale’]
A part of the name to find the pitch detectors input field by (’Mag’ searches e.g. for
Mag, and will match fftMag fields)

octaveCorrection = <numeric> [Default: 0]
1 = enable low-level octave correction tuned for the SHS algorithm (will affect F0C1, voic-
ingC1 and F0raw output fields) [EXPERIMENTAL! MAY BREAK CORRECT PITCH
DETECTION!]

nHarmonics = <numeric> [Default: 15]
Number of harmonics to consider for subharmonic sampling (feasible values: 5-15).

compressionFactor = <numeric> [Default: 0.85]
The factor for successive compression of sub-harmonics.

cPitchSmoother

Description: This component performs temporal pitch smoothing and pitch octave correction.
Input: candidates produced by a pitchBase descendant (e.g. cPitchSHS).

Class hierarchy: cSmileComponent→ cDataProcessor→ cVectorProcessor→ cPitchSmoother

Configuration options:

102 CHAPTER 3. REFERENCE SECTION

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 0]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

medianFilter0 = <numeric> [Default: 0]
Apply median filtering of candidates as the first processing step; the filter length is ‘me-
dianFilter0’ if > 0.

3.3. COMPONENT DESCRIPTION 103

postSmoothing = <numeric> [Default: 0]
Apply post processing (median and spike remover) over ‘postSmoothing’ frames (0 = no
smoothing or use default set by ‘postSmoothingMethod’ option).

postSmoothingMethod = <string> [Default: ‘simple’]
Post processing method to use. One of the following:

none disable post smoothing

simple simple post smoothing using only 1 frame delay (will smooth out 1 frame octave
spikes)

median will apply a median filter to the output values (length = value of ‘postProcessing’
option)

octaveCorrection = <numeric> [Default: 1]
Enable intelligent cross candidate fundamental frequency octave correction.

F0final = <numeric> [Default: 1]
1 = Enable output of final (corrected and smoothed) F0.

F0finalEnv = <numeric> [Default: 0]
1 = Enable output of envelope of final smoothed F0 (i.e. there will be no 0 values (except
for end and beginning)).

no0f0 = <numeric> [Default: 0]
1 = enable ‘no zero F0’, output data only when F0 > 0, i.e. a voiced frame is detected. This
may cause problem with some functionals and framer components, which don’t support
this variable length data yet.

voicingFinalClipped = <numeric> [Default: 0]
1 = Enable output of final smoothed and clipped voicing (pseudo) probability. ‘Clipped’
means that the voicing probability is set to 0 for unvoiced regions, i.e. where the probability
lies below the voicing threshold.

voicingFinalUnclipped = <numeric> [Default: 0]
1 = Enable output of final smoothed, raw voicing (pseudo) probability (unclipped: not
set to 0 during unvoiced regions).

F0raw = <numeric> [Default: 0]
1 = Enable output of ‘F0raw’ copied from input.

voicingC1 = <numeric> [Default: 0]
1 = Enable output of ‘voicingC1’ copied from input.

voicingClip = <numeric> [Default: 0]
1 = Enable output of ‘voicingClip’ copied from input.

cPlp

Description: This component computes perceptual linear predictive cepstral coefficients (PLP)
and RASTA-PLP (currently the RASTA filter is not yet implemented) from a critical band
spectrum (generated by the ‘cMelspec’ component (section 3.3.6, for example). The component
is capable of performing the following processing steps:

1. Take the natural logarithm of the critical band powers

104 CHAPTER 3. REFERENCE SECTION

2. RASTA filtering (to come)

3. Computation of auditory spectrum (equal loudness curve and loudness compression applied
to critical band spectrum)

4. Inverse of the natural logarithm

5. Inverse DFT to obtain autocorrelation coefficients

6. Linear prediction analysis (Durbin recursion) on autocorrelation coefficients

7. Computation of cepstral coefficients from lp coefficients

8. Cepstral ‘liftering’

Each one of these steps can be enabled and disabled individually.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cPlp

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

3.3. COMPONENT DESCRIPTION 105

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring the field/element structure.

lpOrder = <numeric> [Default: 5]
The order of the linear predictor (5th order is optimal according to Hermansky 1990,
JASA).

nCeps = <numeric> [Default: -1]
The number of cepstral coefficients (must be <= ‘lpOrder’; set to -1 for nCeps = lpOrder)

firstCC = <numeric> [Default: 1]
The first cepstral coefficient to compute (set to 0 to include the 0-th coefficient, which is
defined as -log(1/lpcGain)).

lastCC = <numeric> [Default: -1]
The last cepstral coefficient to compute (set to -1 to use nCeps, else lastCC will override
nCeps!).

doLog = <numeric> [Default: 1]
Take the log of input bands (1=yes / 0=no).

doAud = <numeric> [Default: 1]
Do auditory processing (equal loudness curve and loudness compression) (1=yes / 0=no).

RASTA = <numeric> [Default: 0]
Perform RASTA (temporal) filtering [NOT YET IMPLEMENTED] (1=yes / 0=no).

doInvLog = <numeric> [Default: 1]
Apply inverse logarithm after power compression (1=yes / 0=no).

doIDFT = <numeric> [Default: 1]
Apply I(nverse)DFT after power compression and inverse log (1=yes / 0=no).

doLP = <numeric> [Default: 1]
Do lp analysis on autocorrelation function (1=yes / 0=no).

doLpToCeps = <numeric> [Default: 1]
Convert lp coefficients to cepstral coefficients (1=yes / 0=no).

cepLifter = <numeric> [Default: 0]
Parameter for cepstral ‘liftering’, set to 0.0 to disable cepstral liftering.

compression = <numeric> [Default: 0.33]
Compression factor for applying the ‘power law of hearing’.

106 CHAPTER 3. REFERENCE SECTION

melfloor = <numeric> [Default: 9.3e-10]
Minimum value of Mel-spectra when computing cepstral coefficients (will be forced to 1.0
when htkcompatible=1).

htkcompatible = <numeric> [Default: 1]
Set correct Mel-floor (1.0) and force HTK compatible PLP output (1/0 = yes/no).
htkcompatible = 1, forces the following settings:

• melfloor = 1.0 (signal scaling 0..32767*32767)

• append 0-th coeff instead of having it as first value

• doAud = 1 , doLog=0 , doInvLog=0 (doIDFT, doLP, and doLpToCeps are not forced
to 1, this enables generation of HTK compatible auditory spectra, etc. (these, of
course, are not compatible, i.e. are not the same as HTK’s PLP-CC))

• the 0-th audspec component is used as DC component in the i-DFT (else the DC
component is zero).

cPreemphasis

Description: This component performs Pre- and De-emphasis of speech signals using a 1-st
order difference equation: y[n] = x[n]− k · x[n− 1].

Class hierarchy: cSmileComponent→ cDataProcessor→ cWindowProcessor→ cPreemphasis

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

3.3. COMPONENT DESCRIPTION 107

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

noPostEOIprocessing = <numeric> [Default: 0]
1 = do not process incomplete windows at the end of the input.

k = <numeric> [Default: 0.97]
The pre-emphasis coefficient k in y[n] = x[n]− k · x[n− 1].

f = <numeric> [Default: 0]
The pre-emphasis frequency f in Hz, which can be used to compute the filter coefficient
k: k = exp

(
−2π · f

samplingFreq.

)
(if set,f will override k!)

de = <numeric> [Default: 0]
1 = perform de-emphasis instead of pre-emphasis (i.e. y[n] = x[n] + k · x[n− 1])

cSemaineSpeakerID1

Description: This component implements voice activity detection based on an on-line self-
adapting, euclidean distance based, nearest neighbour classifier. It supports a user voice model,
a background noise/silence model, and multiple agent voice models for discriminating the agent
voice from the user’s voice. Required input: A field with various features such as MFCC, PLP,
Spectra, etc., followed by a ‘vadBin’ field, created by a rule-based voice activity component.

Class hierarchy: cSmileComponent → cDataProcessor → cSemaineSpeakerID1

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

108 CHAPTER 3. REFERENCE SECTION

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

trainDur = <numeric> [Default: 500]
The duration of the initial training phase, in frames. The training phase will end when
at least ‘trainDur’ frames for each model (voice and noise) have been collected. Thus it
might happen that more frames have been collected for the noise model than for the speech
model or vice versa before the training phase ends. During the training phase the model
is not used for auto-updating of itself, the rule based voice activity input is used during
this stage.

agentBlockTime = <numeric> [Default: 1000]
The initial user speech time (in frames) during which to block detection of voice activity
while the agent speaks (this information is received via smile messages). This must be
high enough in order to have robust enough models and to avoid adapting the user speech
model to the agent’s voice.

maxTrainTime = <numeric> [Default: 10000]
The maximum time to re-train the user model for (only user speech time, measured from
the beginning of the turn). Use this to prevent over adaptation, since practical observations
revealed that the models become unstable after a a longer period of time. Set this to -1
for infinite re-training.

debug = <numeric> [Default: 0]
Show detailed classification result as debug output. Use only for debugging!

3.3. COMPONENT DESCRIPTION 109

a0 = <numeric> [Default: 0.05]
The decay factor of fuzzy vad smoothing.

a1 = <numeric> [Default: 0.2]
The attack factor of fuzzy vad (¿¿a0) smoothing.

initSpeechModel = <string> [Default: ‘(null)’]
The filename of the file from which to load initial user speech model coefficients from.

initNoiseModel = <string> [Default: ‘(null)’]
The filename of the file from which to load initial noise model coefficients from.

initAgentModel = <string> [Default: ‘model.agent’]
The filename of the file from which to load initial learn agent voice model coefficients from.

agentModelWeight = <numeric> [Default: -1]
The weight of the initial agent model(s). This represents the number of frames the model
represents; set to this to -1 to disable on-line model updates, set to -2 to read the weight
from the model file, set to 0 to disable the initial model.

noiseModelWeight = <numeric> [Default: 2000]
The weight of the initial noise model. This represents the number of frames the model
represents; set to -1 to disable on-line model updates, set to -2 to read the weight from
the model file, set to 0 to disable the initial model.

speechModelWeight = <numeric> [Default: 1000]
The weight of the initial user speech model. This represents the number of frames the
model represents; set to -1 to disable on-line model updates, set to -2 to read the weight
from the model file, set to 0 to disable the initial model.

saveSpeechModel = <string> [Default: ‘(null)’]
The file to save the current user speech model coefficients to, when openSMILE reaches
the end of the input or is terminated gracefully from an external source (e.g. via Ctrl+C).

saveNoiseModel = <string> [Default: ‘(null)’]
The file to save the current noise model coefficients to, when openSMILE reaches the end
of the input or is terminated gracefully from an external source (e.g. via Ctrl+C).

saveAgentModel = <string> [Default: ‘(null)’]
The file to save the current agent speech model coefficients to, when openSMILE reaches
the end of the input or is terminated gracefully from an external source (e.g. via Ctrl+C).

numAgents = <numeric> [Default: 4]
The number of agent voices (i.e. number of models in agent model file).

alwaysRejectAgent = <numeric> [Default: 0]
1 = never detect user speech activity, while the agent is speaking (currently agent speech
is only determined on the basis of messages received from other components).

ruleVadOnly = <numeric> [Default: 0]
1 = do not use speaker adaptive voice activity detection, use only rule based vad with
dynamic thresholds (i.e. this component is bypassed and the input is forwarded to the
output). (This option also implies ‘alwaysRejectAgent=1’)

110 CHAPTER 3. REFERENCE SECTION

cSmileResample

Description: This component implements a spectral domain resampling algorithm. Input
frames are transferred to the spectral domain using an FFT, and a modified DFT is performed
to synthesise samples at the new rate.

Class hierarchy: cSmileComponent → cDataProcessor → cSmileResample

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

targetRate = <numeric> [Default: 16000]
The target sampling frequency in Hz.

3.3. COMPONENT DESCRIPTION 111

resampleRatio = <numeric> [Default: 1]
A fixed resample ratio a (a=fsNew/fsCurrent). If set, this overrides the ‘targetRate’ option.

pitchRatio = <numeric> [Default: 1]
Low-quality pitch scaling factor, if ! = 1.0.

winSize = <numeric> [Default: 0.03]
Internal window size in seconds (will be rounded to nearest power of 2 frame size internally).
This affects the quality of the re-sampling and the accuracy of the target sampling rate.
Larger window sizes allow for a more accurate target sampling frequency, i.e. less pitch
distortion.

cSpecResample

Description: This component implements a spectral domain resampling component. Input
frames are complex valued spectral domain data, which will be shifted and scaled by this com-
ponent, and a modified DFT is performed to synthesise samples at the new rate.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cSpecResam-
ple

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

112 CHAPTER 3. REFERENCE SECTION

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 0]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

targetFs = <numeric> [Default: 16000]
The target sampling frequency in Hz.

resampleRatio = <numeric> [Default: 1]
Specifies a fixed resample ratio a (a=fsNew/fsCurrent). If set, this overrides ‘targetFs’.

inputFieldPartial = <string> [Default: ‘(null)’]
The name of the input field to search for. (NULL (default): use full input vector)

cSpecScale

Description: This component performs linear/non-linear axis scaling of FFT magnitude spec-
tra with spline interpolation.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cSpecScale

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

3.3. COMPONENT DESCRIPTION 113

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 0]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

scale = <string> [Default: ‘log’]
The target scale. One of the following:

log(arithmic) logarithmic scale, see ‘logScaleBase’

oct(ave) octave scale = logarithmic scale with base 2

sem(itone) musical semi-tone scale (see ‘firstNote’ option)

lin(ear) linear scale

sourceScale = <string> [Default: ‘lin’]
The source scale (currently only ‘lin(ear)’ is supported).

logScaleBase = <numeric> [Default: 2]
The base for log scales (a log base of 2.0 – the default – corresponds to an octave target
scale).

logSourceScaleBase = <numeric> [Default: 2]
The base for log source scales (a log base of 2.0 - the default - corresponds to an octave
source scale)

firstNote = <numeric> [Default: 55]
The first note (in Hz) for a semi-tone scale.

interpMethod = <string> [Default: ‘spline’]
The interpolation method for rescaled spectra, choose between: ‘none’, ‘spline’

114 CHAPTER 3. REFERENCE SECTION

minF = <numeric> [Default: 25]
The minimum frequency of the target scale.

maxF = <numeric> [Default: -1]
The maximum frequency of the target scale (-1.0 : set to maximum frequency of the source
spectrum)

nPointsTarget = <numeric> [Default: 0]
The number of frequency points in the target spectrum (¡= 0 : same as input spectrum)

specSmooth = <numeric> [Default: 0]
1 = perform spectral smoothing before applying the scale transformation.

specEnhance = <numeric> [Default: 0]
1 = do spectral peak enhancement before applying smoothing (if enabled) and the scale
transformation.

auditoryWeighting = <numeric> [Default: 0]
1 = enable auditory weighting after scale transformation (this is currently only supported
for octave (log2) scales).

cSpectral

Description: This component computes spectral features such as the spectral flux, roll-off
points, spectral centroid, position of spectral maximum and minimum, and user defined band
energies (rectangular summation of FFT magnitudes).

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cSpectral

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

3.3. COMPONENT DESCRIPTION 115

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 0]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

squareInput = <numeric> [Default: 1]
1/0 = square input values (e.g. if input is magnitude and not power spectrum)

bands[= <string>] [Default: ‘250-650’]
bands[n] = LoFrq(Hz)-HiFrq(Hz) (e.g. 0-250), compute energy in the given spectral band
by summation of FFT bins in this band.

rollOff[= <numeric>] [Default: 0.9]
rollOff[n] = X (X in the range 0..1), compute X*100 percent spectral roll-off point. The
X ∗ 100 percent spectral roll-off point is determined as the frequency below which X ∗ 100
percent of the total signal energy fall. Sometimes we only find the term ‘spectral roll-off’
in the literature (especially Music Information Retrieval), it then refers to the 95% roll-off
point.

flux = <numeric> [Default: 1]
(1/0=yes/no) enable computation of spectral flux. Spectral Flux F t

S for N FFT bins is
computed via equation 3.2, whereby Et is the energy of the frame at time t.

F t
S =

√√√√ 1
N

N∑
f=1

(
Xt(f)
Et

− Xt−1(f)
Et−1

)2

(3.2)

centroid = <numeric> [Default: 1]
(1/0=yes/no) enable computation of spectral centroid. Spectral centroid (Ct

S) at time t is
computed via equation 3.3. Xt(f) is the spectral magnitude at time t in bin f .

Ct
S =

∑
∀f f ·Xt(f)
·
∑
∀f X

t(f)
(3.3)

116 CHAPTER 3. REFERENCE SECTION

maxPos = <numeric> [Default: 1]
(1/0=yes/no) enable computation of the position of the maximum magnitude spectral bin
(in Hz).

minPos = <numeric> [Default: 1]
(1/0=yes/no) enable computation of position of the minimum magnitude spectral bin (in
Hz).

entropy = <numeric> [Default: 0]
(1/0=yes/no) enable computation of the spectral entropy. The spectral entropy is com-
puted from the normalised magnitude spectrum (or power spectrum, if ‘squareInput=1’).
Xt(f) is the spectral magnitude at time t in bin f . The normalised spectrum Xt

n(f) is
obtained as:

Xt
n(f) =

Xt(f)∑
∀f
Xt(f)

(3.4)

The entropy H is then computed as:

H = −
∑
∀f

Xt
n(f) · log2(Xt

n(f)) (3.5)

variance = <numeric> [Default: 0]
(1/0=yes/no) enable computation of spectral variance (mpeg7: spectral spread). The spec-
tral variance is computed from the magnitude spectrum (or power spectrum, if ‘squareIn-
put=1’). Xt(f) is the spectral magnitude at time t in bin f . The variance σ2 is then
computed as:

σ2 =
1∑

∀f
Xt(f)

∑
∀f

(
f − Ct

S

)2 ·Xt(f) (3.6)

skewness = <numeric> [Default: 0]
(1/0=yes/no) enable computation of spectral skewness. This is a measure of the asymme-
try of the spectral distribution around its centroid Ct

S . The spectral skewness is computed
from the magnitude spectrum (or power spectrum, if ‘squareInput=1’). Xt(f) is the spec-
tral magnitude at time t in bin f . The skewness γ1 is then computed as:

γ1 =
1

σ3
∑
∀f
Xt(f)

∑
∀f

(
f − Ct

S

)3 ·Xt(f) (3.7)

kurtosis = <numeric> [Default: 0]
(1/0=yes/no) enable computation of spectral kurtosis. The kurtosis is an indicator for
the peakedness of the spectrum, i.e. if it is rather flat (< 3), follows a normal distribution
around the centroid (= 3), or has a pronounced peak at the centroid (> 3). The spectral
kurtosis is computed from the magnitude spectrum (or power spectrum, if ‘squareIn-
put=1’). Xt(f) is the spectral magnitude at time t in bin f . The skewness γ1 is then
computed as:

γ1 =
1

σ4
∑
∀f
Xt(f)

∑
∀f

(
f − Ct

S

)4 ·Xt(f) (3.8)

3.3. COMPONENT DESCRIPTION 117

slope = <numeric> [Default: 0]
(1/0=yes/no) enable computation of the spectral slope mS , using the following linear
regression equation:

mS =

N

(∑
∀f
f ·Xt(f)

)
−

(∑
∀f
f

)
·

(∑
∀f
Xt(f)

)

N

(∑
∀f
f2

)
−

(∑
∀f
f

)2 (3.9)

cTonefilt

Description: This component implements an on-line, sample by sample semi-tone filter bank
which can be used as first step for the computation of CHROMA features as a replacement of
cTonespec (section 3.3.6). In contrast to cTonespec, this component can compute semi-tone
spectra at any rate and resolution, because it uses a continuous time-domain filter-bank instead
of windowing and short-term FFT. It expects un-windowed PCM data as input (generated by
the cWaveSource (section 3.3.3) component, for example).

Class hierarchy: cSmileComponent → cDataProcessor → cTonefilt

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

118 CHAPTER 3. REFERENCE SECTION

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

nNotes = <numeric> [Default: 48]
The number of semi-tone filters in the filter bank.

firstNote = <numeric> [Default: 55]
The frequency of the first note in Hz.

decayF0 = <numeric> [Default: 0.9995]
The gliding average decay coefficient for the first note (lowest frequency).

decayFN = <numeric> [Default: 0.998]
The gliding average decay coefficient for the last note (highest frequency) (must be <

‘decayF0’ !); decay coefficients for intermediate frequencies will be interpolated linearly
from the start and end coefficients.

outputPeriod = <numeric> [Default: 0.1]
Specifies the period at which to produce output frames, in seconds.

cTonespec

Description: This component computes a semi-tone spectrum from an FFT magnitude spec-
trum (produced by cFFTmagphase, section 3.3.6).

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cTonespec

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

3.3. COMPONENT DESCRIPTION 119

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

nOctaves = <numeric> [Default: 6]
The number of octaves (12 semitones) the spectrum should span.

firstNote = <numeric> [Default: 55]
The frequency of the first note (in Hz).

filterType = <string> [Default: ‘gau’]
The shape of the semitone filter:

tri Triangular

trp Triangular-powered (squared)

gau Gaussian

usePower = <numeric> [Default: 0]
1 = compute the semi-tone spectrum from the power spectrum instead of the magnitudes
(= square input values).

dbA = <numeric> [Default: 1]
1 = apply a built-in dB(A) weighting to the linear scale (magnitude or power) spectrum
(1/0 = yes/no).

120 CHAPTER 3. REFERENCE SECTION

cTransformFFT

Description: This component performs an FFT on a sequence of real values (one frame), the
output is the complex domain result of the transform. Use the cFFTmagphase component to
compute magnitudes and phases from this complex output.

Class hierarchy: cSmileComponent→ cDataProcessor→ cVectorProcessor→ cTransformFFT

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each

3.3. COMPONENT DESCRIPTION 121

input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

inverse = <numeric> [Default: 0]
1 = perform inverse FFT.

cTurnDetector

Description: Speaker turn detector using data from a cEnergy (section 3.3.6), cVadV1 (sec-
tion 3.3.6), or cSemaineSpeakerID1 (adaptive VAD, section 3.3.6) to determine speaker turns
and identify continuous segments of voice activity. It produces an output field ‘isTurn’ and
is capable of sending smile messages indicating the turn start and end, as well as turn status
messages.

Class hierarchy: cSmileComponent → cDataProcessor → cTurnDetector

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

122 CHAPTER 3. REFERENCE SECTION

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

threshold = <numeric> [Default: 0.001]
The silence threshold to use (the default value is for RMS energy, change it to -13.0 for
log energy, or 0.55 for VAD input (binary and fuzzy)).

autoThreshold = <numeric> [Default: 0]
1 = automatically adjust threshold (EXPERIMENTAL).

minmaxDecay = <numeric> [Default: 0.9995]
The decay constant used for min/max values in auto-thresholder (a larger value means a
slower recovery from loud sounds).

nPre = <numeric> [Default: 10]
The number of frames which must be greater than the threshold in series, until a turn
start is detected.

nPost = <numeric> [Default: 20]
The number of frames which must be smaller than the threshold in series until a turn end
is detected.

useRMS = <numeric> [Default: 1]
1 = the provided energy field in the input is RMS energy instead of log energy.

readVad = <numeric> [Default: 0]
1 = use the result (‘vadBin’) from the cVadV1 or cSemaineSpeakerID component instead
of reading frame rms/log energy (the threshold is set to 0.55 if this option is enabled).

idx = <numeric> [Default: -1]
The index of the RMS or LOG energy field to use (-1 to automatically find the field).

messageRecp = <string> [Default: ‘(null)’]
The (cWinToVecProcessor type) component(s) to send ‘frameTime’ messages to (use , to
separate multiple recipients), leave blank (NULL) to not send any messages. The messages
will be sent at the turn end and (optionally) during the turn at fixed intervals configured
by the ‘msgInterval’ parameter (if it is not 0).

msgInterval = <numeric> [Default: 0]
Interval at which to send ‘frameTime’ messages during an ongoing turn. Set to 0 to disable
sending of intra turn messages.

eventRecp = <string> [Default: ‘(null)’]
The component(s) to send ‘turnStart/turnEnd’ messages to (use , to separate multiple
recipients), leave blank (NULL) to not send any messages

statusRecp = <string> [Default: ‘(null)’]
The component(s) to send ‘turnSpeakingStatus’ messages to (use , to separate multiple
recipients), leave blank (NULL) to not send any messages

3.3. COMPONENT DESCRIPTION 123

maxTurnLength = <numeric> [Default: 0]
The maximum turn length in seconds (<= 0 = infinite). A turn end will be favoured by
temporarily reducing the ‘nPost’ setting to 1 after ‘maxTurnLength’.

maxTurnLengthGrace = <numeric> [Default: 1]
The grace period to grant, after ‘maxTurnLength’ is reached (in seconds). After a turn
length of maxTurnLength + maxTurnLengthGrace an immediate turn end will be forced.

debug = <numeric> [Default: 4]
The log-level to show some turn detector specific debug messages on.

cVadV1

Description: A voice activity detector based on Line-Spectral-Frequencies (cLsp, section 3.3.6),
Mel spectra ((cMelspec, section 3.3.6), and energy. Fuzzy scores related to the deviation from the
observed long-term mean values are computed from these input fields. This component requires
input of the following type in the following order: MelSpec; lsf; energy. An example excerpt
from an example configuration file is shown here:

∗∗∗∗∗∗∗∗∗∗∗ example c o n f i g f o r cVadV1 ∗∗∗∗∗∗∗∗∗∗∗

[enV : cEnergy]
reader . dmLevel=frame
w r i t e r . dmLevel=energy
nameAppend=energy
rms=1
log=1

[lpc : cLpc]
r eader . dmLevel=frames
saveRefCoe f f=0
w r i t e r . dmLevel=lpc
p=10

[mspecV : cMelspec]
r eader . dmLevel=f f tmagn i tude
w r i t e r . dmLevel=mspec
htkcompatible = 0
usePower = 0
nBands = 14
l o f r e q = 50
h i f r e q = 4000

[l s p : cLsp]
reader . dmLevel=lpc
w r i t e r . dmLevel=l s p

[vad : cVadV1]
reader . dmLevel=mspec ; l s p ; energy
w r i t e r . dmLevel=vad11
w r i t e r . l e v e l c o n f . noHang=1
debug=\cm[vaddebug{0}:1= debug vad]
th r e sho ld=\cm[th r e sho ld {−13}:VAD thre sho ld]
disableDynamicVAD=\cm[disableDynamicVAD {0} : d i s a b l e dynamic th r e sho ld

vad , i n s t ead use energy based vad only , the energy th re sho ld can be

124 CHAPTER 3. REFERENCE SECTION

s e t v ia the ’ thresho ld ’ opt ion]
; th r e sho ld=\cm[th r e sho ld { −13.0} :VAD energy thresho ld , minimum energy

f o r dynamic vad , can be very small , i t i s used only as a backup ;
r e a l th r e sho ld i f disableDynamicVAD i s set , in that case you should

s e t the th r e sho ld to approx .]

Note: this is only an example configuration, you must adjust this to your setup and add the
components the global componentInstance section.

Class hierarchy: cSmileComponent → cDataProcessor → cVadV1

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

3.3. COMPONENT DESCRIPTION 125

threshold = <numeric> [Default: -13]
The minimum rms/log energy threshold to use (or the actual rms energy threshold, if
disableDynamicVAD==1)

disableDynamicVAD = <numeric> [Default: 0]
1/0 = yes/no, whether dynamic VAD is disabled (default is enabled).

debug = <numeric> [Default: 0]
1/0 enable/disable VAD debug output. Use for testing and debugging only!

cValbasedSelector

Description: This component copies only those frames from the input to the output that match
a certain threshold criterion, i.e. where a specified value N exceeds a certain threshold.

Class hierarchy: cSmileComponent → cDataProcessor → cValbasedSelector

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

126 CHAPTER 3. REFERENCE SECTION

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

threshold = <numeric> [Default: 1]
Threshold for selection (see also the ‘invert’ option).

idx = <numeric> [Default: 0]
The index of the element to base the selection decision on. Currently only one element is
supported, no vector based thresholds etc. are possible.

invert = <numeric> [Default: 0]
1 = output the frame when element[idx] < threshold
0 = output the frame if element[idx] => ‘threshold’.

allowEqual = <numeric> [Default: 0]
If this option is set to 1, also output the frame when element[idx] = ‘threshold’.

removeIdx = <numeric> [Default: 0]
1 = remove field element[idx] in the output vector
0 = keep field element[idx] in the output vector

cVecGlMean

Description: This is the old component for cepstral mean subtraction. It has been replaced
by the cVectorMVN (section 3.3.6) component, which is more powerful. It computes gliding
mean of input vectors and subtracts it from the vectors (use this component for Cepstral Mean
Subtraction).

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cVecGlMean

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

3.3. COMPONENT DESCRIPTION 127

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘zeromean’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

initFile = <string> [Default: ‘(null)’]
Filename of the file from which to load the initial mean values.

updateMethod = <string> [Default: ‘iavg’]
Specifies how to incrementally update the mean values. One of the following:

nul do not perform any updates, use only initial values.

exp exponential: µ1 = α · µ0 + (1− α) · x

fix compute the mean over a buffer of fixed length (see ‘fixedBuffer’ option)

avg moving average method with weighted fixed initial values

iavg moving average method with weighted variable (updated per turn) initial values

Note: if ‘resetOnTurn’ = 0 then ‘avg’ and ‘iavg’ methods are identical.

alpha = <numeric> [Default: 0.995]
The weighting factor α in gliding average computation.

fixedBuffer = <numeric> [Default: 5]
The size of the fixed length buffer (in seconds).

turnOnlyUpdate = <numeric> [Default: 1]
1 = perform mean update only during turns (works for all methods).

invertTurn = <numeric> [Default: 0]
1 = invert turn state (i.e. this changes a ‘turnOnly’ option into “not turn” option).

128 CHAPTER 3. REFERENCE SECTION

resetOnTurn = <numeric> [Default: 0]
1 = reset mean values at the beginning of each new turn.

turnOnlyNormalise = <numeric> [Default: 0]
1 = normalise only during turns (in between, data will pass through unmodified).

htkcompatible = <numeric> [Default: 0]
A flag that indicates (if set to 1) whether the last coefficient in ‘initFile’ is loaded into
means[0]. Use this when reading htk-compatible cmn init files, and not using htk-compatible
MFCCs or PLPs.

turnStartMessage = <string> [Default: ‘turnStart’]
You can use this option to define a custom message name for turn start messages this
component listens for, e.g. if you want to use voice activity start/end messages instead.

turnEndMessage = <string> [Default: ‘turnEnd’]
You can use this option to define a custom message name for turn end messages this
component listens for, e.g. if you want to use voice activity start/end messages instead

cVectorConcat

Description: This component is similar to cBuffer (section 3.3.6), however it is optimised for
concatenating frames from multiple levels, thereby reading frame by frame. Reading multiple
frames at once (as is supported by cBuffer) is not supported.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cVecGlMean

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

3.3. COMPONENT DESCRIPTION 129

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

cVectorHEQ

Description: This component extends the base classes cVectorTransform ((section 3.3.6)) and
cVectorMVN (section 3.3.6), and implements histogram equalisation. This technique is used for
noise robust speech recognition.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cVectorTrans-
form → cVectorMVN → cVectorHEQ

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

130 CHAPTER 3. REFERENCE SECTION

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘null’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

mode = <string> [Default: ‘analysis’]
This sets the mode of operation:

an(alysis) analyse all incoming data and compute transform for later use. No transforma-
tion (no modfication) of data is performed and no data is output (the tick() function
of the cVectorTransform component always returns 0 when in analysis mode!).

tr(ansformation) apply a pre-computed transform loaded from the file ‘initFile’. The
transform is applied to the input data, however no on-line adaptation of the transform
is performed.

in(cremental) use the transform loaded from the file ‘initFile’ as initial transform (if
‘initFile’ is not empty). The transform is incrementally update from new input data
using the update method specified via the ‘updateMethod’ option.

initFile = <string> [Default: ‘(null)’]
The file to load the (initial) transformation data from (see vectorTransform.cpp for docu-
mentation of the file format)

saveFile = <string> [Default: ‘(null)’]
The file to save transformation data to. The file is always saved in the new smile binary
transformation data format (see the documentation of the cVectorTransform base class in
section 3.3.6) for documentation of the file format).

updateMethod = <string> [Default: ‘buf’]
Specifies how to incrementally update the transform. One of the following strings:

fix/buf the transform is computed over a history buffer of fixed length

3.3. COMPONENT DESCRIPTION 131

avg cumulative average method (sum of all input values so far, normalised by the count
of all input values so far) with weighted fixed initial values.

alpha = <numeric> [Default: 0.995]
The weighting factor α for exponential transform update.

weight = <numeric> [Default: 100]
The weighting factor for the ‘avg’ mean update, i.e. the factor the initial transform pa-
rameters are weighted by when building the cumulative average.

fixedBuffer = <numeric> [Default: 5]
The size of the fixed length buffer (in seconds) for the fixed buffer update method ‘fix’ or
‘buf’.

turnOnlyUpdate = <numeric> [Default: 0]
1 = perform transform update only during turns (between turnStart and turnEnd mes-
sages) (works for all methods).

invertTurn = <numeric> [Default: 0]
1 = invert the turn state (i.e. this changes a ‘turnOnly’ option into ‘not turn’ option).

resetOnTurn = <numeric> [Default: 0]
1 = reset transform values at the beginning of each new turn (only in mode ‘analysis’ and
‘incremental’)

turnOnlyNormalise = <numeric> [Default: 0]
1 = apply the transform only to turns, in between data will pass through unmodified.
‘invertTurn’ will also invert this option.

turnOnlyOutput = <numeric> [Default: 0]
1 = output data to write level only during a turn (this will implicitly set turnOnlyNormalise
= 1). ‘invertTurn’ will also invert this option.

htkcompatible = <numeric> [Default: 0]
A flag that indicates (if set to 1) whether the last coefficient in ‘initFile’ is loaded into
means[0] (use this only when reading htk-compatible CMN init files, and not using htk-
compatible MFCCs or PLPs)

turnStartMessage = <string> [Default: ‘turnStart’]
You can use this option to define a custom message name for the turn start message, i.e.
if you want to use voice activity start/end messages instead.

turnEndMessage = <string> [Default: ‘turnEnd’]
You can use this option to define a custom message name for the turn end message, i.e. if
you want to use voice activity start/end messages instead.

meanEnable = <numeric> [Default: 1]
1 = enable normalisation to 0 mean.

stdEnable = <numeric> [Default: 1]
1 = enable standardisation to standard deviation 1.

132 CHAPTER 3. REFERENCE SECTION

normEnable = <numeric> [Default: 0]
1 = enable normalisation (scaling) of values to the range -1 to +1 (this can not be used
in conjunction with ‘stdEnable=1‘).

numIntervals = <numeric> [Default: 1000]
The number of discrete bins to use during histogram computation (a higher number leads
to a more fine grained histogram).

histRange = <numeric> [Default: 4]
The range of the histogram in terms of a factor applied to the standard deviation (range
[mean-histRange*stddev; mean+histRange*stddev]). Please note, that this can lead to a
changing range, if the standard deviation changes. This is not yet wll supported since it
requires histogram rescaling. We recommend to initialise with an MVN file, and disable
on-line updates of the standard deviation, or use the option ‘fixedRange=1’.

meanTolerance = <numeric> [Default: 0.01]
The percentage of allowed mean drift before the histogram range is adjusted and the
histogram is rescaled.

rangeTolerance = <numeric> [Default: 0.01]
The percentage of allowed range drift before the histogram range is adjusted and the
histogram is rescaled.

fixedRange = <numeric> [Default: 0]
1 = use a fixed range from the MVN initialisation file and do not update the range when
the standard deviation changes.

noHeqInit = <numeric> [Default: 0]
1 = do not use HEQ data from the init file (this is to be used in conjunction with ‘fixe-
dRange=1’)

stdRange = <numeric> [Default: 0]
1 = use a fixed absolute histogram range. This implies ‘fixedRange=1’, but does not use
the MVN data from the init file. Instead, the init data is generated as mean 0 and standard
deviation 1, the histogram range is then given by the absolute value of the ‘histRange’
parameter as: -histRange to +histRange.

cVectorMVN

Description: This component extends the base class cVectorTransform (section 3.3.6) and im-
plements mean/variance normalisation. You can use this component to perform on-line cepstral
mean normalisation. See cFullinputMean (section 3.3.6) for off-line cepstral mean normalisation.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cVectorTrans-
form → cVectorMVN

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

3.3. COMPONENT DESCRIPTION 133

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘null’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

mode = <string> [Default: ‘analysis’]
This sets the mode of operation:

an(alysis) analyse all incoming data and compute transform for later use. No transforma-
tion (no modfication) of data is performed and no data is output (the tick() function
of the cVectorTransform component always returns 0 when in analysis mode!).

tr(ansformation) apply a pre-computed transform loaded from the file ‘initFile’. The
transform is applied to the input data, however no on-line adaptation of the transform
is performed.

134 CHAPTER 3. REFERENCE SECTION

in(cremental) use the transform loaded from the file ‘initFile’ as initial transform (if
‘initFile’ is not empty). The transform is incrementally update from new input data
using the update method specified via the ‘updateMethod’ option.

initFile = <string> [Default: ‘(null)’]
The file to load the (initial) transformation data from (see vectorTransform.cpp for docu-
mentation of the file format)

saveFile = <string> [Default: ‘(null)’]
The file to save transformation data to. The file is always saved in the new smile binary
transformation data format (see the documentation of the cVectorTransform base class in
section 3.3.6) for documentation of the file format).

updateMethod = <string> [Default: ‘buf’]
Specifies how to incrementally update the transform. One of the following strings:

fix/buf the transform is computed over a history buffer of fixed length

avg cumulative average method (sum of all input values so far, normalised by the count
of all input values so far) with weighted fixed initial values.

alpha = <numeric> [Default: 0.995]
The weighting factor α for exponential transform update.

weight = <numeric> [Default: 100]
The weighting factor for the ‘avg’ mean update, i.e. the factor the initial transform pa-
rameters are weighted by when building the cumulative average.

fixedBuffer = <numeric> [Default: 5]
The size of the fixed length buffer (in seconds) for the fixed buffer update method ‘fix’ or
‘buf’.

turnOnlyUpdate = <numeric> [Default: 0]
1 = perform transform update only during turns (between turnStart and turnEnd mes-
sages) (works for all methods).

invertTurn = <numeric> [Default: 0]
1 = invert the turn state (i.e. this changes a ‘turnOnly’ option into ‘not turn’ option).

resetOnTurn = <numeric> [Default: 0]
1 = reset transform values at the beginning of each new turn (only in mode ‘analysis’ and
‘incremental’)

turnOnlyNormalise = <numeric> [Default: 0]
1 = apply the transform only to turns, in between data will pass through unmodified.
‘invertTurn’ will also invert this option.

turnOnlyOutput = <numeric> [Default: 0]
1 = output data to write level only during a turn (this will implicitly set turnOnlyNormalise
= 1). ‘invertTurn’ will also invert this option.

htkcompatible = <numeric> [Default: 0]
A flag that indicates (if set to 1) whether the last coefficient in ‘initFile’ is loaded into
means[0] (use this only when reading htk-compatible CMN init files, and not using htk-
compatible MFCCs or PLPs)

3.3. COMPONENT DESCRIPTION 135

turnStartMessage = <string> [Default: ‘turnStart’]
You can use this option to define a custom message name for the turn start message, i.e.
if you want to use voice activity start/end messages instead.

turnEndMessage = <string> [Default: ‘turnEnd’]
You can use this option to define a custom message name for the turn end message, i.e. if
you want to use voice activity start/end messages instead.

meanEnable = <numeric> [Default: 1]
1 = enable normalisation to 0 mean.

stdEnable = <numeric> [Default: 1]
1 = enable standardisation to standard deviation 1.

normEnable = <numeric> [Default: 0]
1 = enable normalisation (scaling) of values to the range -1 to +1 (this can not be used
in conjunction with ‘stdEnable=1‘).

cVectorTransform

This section describes the functionality implemented in the cVectorTransform class. The class
itself cannot be instantiated as a component, thus, this section is not a component reference, as
the other sections. However, important concepts, such as transform file formats are described
here, which are common to components that base on cVectorTransform, such as cVectorMVN
(section 3.3.6) and cVectorHEQ (section 3.3.6).
This base class provides support for

• saving computed data at the end of processing (level or custom)

• saving computed data continuously (level or custom)

• applying pre-computed transformation data loaded from file, w/o adaptation

• applying pre-computed transformation data loaded from file, with on-line adaptation

• applying purely on-line adaptive transformation

The class can split the input into segments, which are dynamically controlled by ‘turnStart’
and ‘turnEnd’ smile messages received from other components. Thereby, different modes of
operation are distinguished:

• pure analysis: the transform data is computed, no output is generated (except for the
transformation data (coefficients, etc.) itself, if it is output to a level). Computation of
the transform data is possible for the full input or on a per segment base.

• pure transform: pre-computed transform data is applied, no transform data update is
performed

• transform with online adaptation: combines a) and b)
in this mode the output of the transform coefficients to a level is not possible (this is only
possible in analysis mode).

136 CHAPTER 3. REFERENCE SECTION

Transform data can be saved to files and restored from files. Thereby three simple file formats
are supported: HTK’s CMN text-based formats, a simple smile binary file format (deprecated),
and a new smile binary transform data format. Transform data will always be saved in the
new smile binary transform data format. When loading a transform, the file format will be
auto-determined according to the following rules. The first 4 bytes are checked for the following
tokes (in the given order):

1. magic ID: 0xEE 0x11 0x11 0x00 → new smile binary format

2. HTK Header: < M E A → HTK text-based format

3. everything else → deprecated smile binary format

The three file formats are described in the following:

• HTK CMN Format (text-based)

<MEAN> N
Val1 Val2 Val3 . . .

Thereby, N is the number of values in the vector. The values are listed in the second
line, separated by a single spaces. Please make sure the <MEAN> is not preceded by
whitespaces.

• deprecated, simple binary 2xN matrix data format: Dimensions (2*N x double):
N x double = means,
N x double = stddevs
The vector size N is computed as half of the file size and is thus not contained in the file.

• advanced binary smile transformation format:
File header:
Magic (int32) (content: 0xEE 0x11 0x11 0x00)
No. of vectors (int32)
No. of groups (int32)
No. of timeunits (int32)
Vector size (int32)
No. of userData fields (int32)
TypeID (int32)
Reserved (16 byte)
User data: ‘No. of userData’ x (double, 8 byte)
Matrix data: ‘ No. of vectors’ x ‘Vector size’ x (double, 8 byte)

cVectorPreemphasis

Description: This component performs per frame pre-emphasis without an inter-frame state
memory. This is the way HTK does pre-emphasis. See the cPreemphasis (section 3.3.6) compo-
nent for implementation details and continuous pre-emphasis filtering.

Class hierarchy: cSmileComponent→ cDataProcessor→ cVectorProcessor→ cVectorPreem-
phasis

Configuration options:

3.3. COMPONENT DESCRIPTION 137

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘null’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

k = <numeric> [Default: 0.97]
The pre-emphasis coefficient k in y[n] = x[n]− k · x[n− 1].

f = <numeric> [Default: 0]
The pre-emphasis frequency f in Hz, which can be used to compute the filter coefficient
k: k = exp

(
−2π · f

samplingFreq.

)
(if set,f will override k!)

138 CHAPTER 3. REFERENCE SECTION

de = <numeric> [Default: 0]
1 = perform de-emphasis instead of pre-emphasis (i.e. y[n] = x[n] + k · x[n− 1])

cVectorOperation

Description: This component performs elementary operations on vectors (i.e. basically ev-
erything that does not require history or context, everything that can be performed on single
vectors w/o external data (except for constant parameters, etc.)). See the ‘operation’ option
below for currently supported operations.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cVectorOper-
ation

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘null’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

3.3. COMPONENT DESCRIPTION 139

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

operation = <string> [Default: ‘norm’]
A string which specifies the type of operation to perform. The following tokens are valid
and indicate the currently supported operations:

norm normalise vector length (euclidean norm, L2) to 1

mul multiply the elemnts in the input vector by ‘param1’

add add ‘param1’ to each element of the input vector

log compute the natural logarithm of each element

lgA compute the base-‘param1’ logarithm of the elements

nl1 normalise the vector sum (L1 norm) to 1

sqrt compute the square root of the elements in the vector

pow take the elements to the power of ‘param1’

exp raise ‘param1’ to the power of the vector elements

ee raise the base e to the power of the vector elements

abs take the absolute value of each element

To combine multiple operations in series, you must use multiple cVectorOperation com-
ponents.

param1 = <numeric> [Default: 1]
parameter 1, see ‘operation’ option for details.

param2 = <numeric> [Default: 1]
parameter 2, see ‘operation’ option for details. (currently unused)

logfloor = <numeric> [Default: 1e-07]
Floor value for log() function arguments.

powOnlyPos = <numeric> [Default: 0]
If ‘operation’ = ‘pow’, do not take negative values to the power of ‘param1’, instead,
output 0. This is necessary to avoid ‘Not-a-number’ values if the exponent is rational and
the base is negative.

cWeightedDiff

Description: Description: This component computes a weighted and smoothed differential
by considering the change of the current value wrt. a short term average window (see [SER07]
for a description).

Class hierarchy: cSmileComponent → cDataProcessor → cWindowProcessor → cWeighted-
Diff

Configuration options:

140 CHAPTER 3. REFERENCE SECTION

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘null’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

noPostEOIprocessing = <numeric> [Default: 0]
1 = do not process incomplete windows at the end of the input.

leftwin = <numeric> [Default: 10]
The left (past) context window for smoothing, in frames (this overwrites ‘leftwin sec’, if
set).

leftwin sec = <numeric> [Default: 0.1]
The left (past) context window for smoothing, in seconds (this will be rounded to the
nearest number of frames).

3.3. COMPONENT DESCRIPTION 141

rightwin = <numeric> [Default: 20]
The right (future) context window for smoothing or weighting (see the ‘doRightWeight’
option), in frames (this overwrites rightwin sec, if set).

rightwin sec = <numeric> [Default: 0.2]
The right (future) context window for smoothing or weighting (see ‘doRightWeight’ op-
tion), in seconds.

doRightWeight = <numeric> [Default: 1]
1 = use right mean for weighting
-1 = use left mean for weighting
0 = use right mean for differential only if ‘rightwin > 0’.

cWindower

Description: This component applies a window function (i.e. multiplies values of a frame with
the values of the window function) to data frames.

Class hierarchy: cSmileComponent → cDataProcessor → cVectorProcessor → cWindower

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

blocksize = <numeric> [Default: 0]
The size of data blocks to process, in frames (this sets both ‘blocksizeR’ and ‘blocksizeW’,
and overwrites ‘blocksize sec’).

blocksizeR = <numeric> [Default: 0]
The size of data blocks to read, in frames (overwrites ‘blocksize’).

blocksizeW = <numeric> [Default: 0]
The size of data blocks to write, in frames (overwrites ‘blocksize’).

blocksize sec = <numeric> [Default: 0]
The size of data blocks to process, in seconds (this sets both ‘blocksizeR sec’ and ‘block-
sizeW sec’).

blocksizeR sec = <numeric> [Default: 0]
The size of data blocks to read, in seconds (overwrites ‘blocksize sec’).

142 CHAPTER 3. REFERENCE SECTION

blocksizeW sec = <numeric> [Default: 0]
The size of data blocks to write in seconds (overwrites ‘blocksize sec’).

nameAppend = <string> [Default: ‘null’]
A string suffix to append to the input field names (default: empty).

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see the ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

processArrayFields = <numeric> [Default: 1]
1 = process each array field as one vector individually (and produce one output for each
input array field). Only array fields (i.e. fields with more than one element) are processed
if this is set.
0 = process complete input frame as one vector, ignoring field/element structure.

gain = <numeric> [Default: 1]
This option allows you to specify a scaling factor by which window function (which is by
default normalised to max. 1) should be multiplied by.

offset = <numeric> [Default: 0]
This specifies an offset which will be added to the samples after multiplying with the
window function.

winFunc = <string> [Default: ‘Han’]
This option selects the window function to use. In the following equations n specifies a
sample index in the range from 0..N − 1, and N specifies the frame size. You can choose
from the following list of window functions:

Han Hann window (= raised cosine window; use this, if you want to re-synthesis from
the spectral domain, also use 50% overlap in the framer!).

wHan[n] = 0.5
(

1− cos
(

2πn
N − 1

))
(3.10)

Ham Hamming window

wHam[n] = 0.54 + 0.46 cos
(

2πn
N − 1

)
(3.11)

Rec Rectangular window (i.e. constant 1, no windowing)

wRec[n] = 1 (3.12)

Gau Gaussian window (see the ‘sigma’ option)

wGau[n] = e
− 1

2

(
n−(N−1)/2
σ(N−1.0)/2

)2

(3.13)

Sin Sine/cosine window

wSin[n] = sin
(

πn

N − 1.0

)
(3.14)

3.3. COMPONENT DESCRIPTION 143

Tri Triangular window (non zero-valued end points)

wTri[n] =

{{
2(n+1)

N if n < N
2

2(N−n)
N if n ≥ N

2

Bar Bartlett window (= Triangular window with zero-valued end points)

wBar[n] =

{{
2(n)
N−1 if n < N

2
2(N−n−1)

N−1 if n ≥ N
2

BaH Bartlett-Hann window (see the ‘alpha0-2’ options)

wBaH [n] = α0 − α1

∣∣∣∣ n

N − 1
− 1

2

∣∣∣∣− α2 cos
(

2πn
N − 1

)
(3.15)

The defaults for the α parameters are: α0 = 0.62, α1 = 0.48, α2 = 0.38

Bla Blackmann window (see the ‘alpha’ option)

wBla[n] =
1− α

2
− 1

2
cos
(

2πn
N − 1

)
+
α

2
cos
(

4πn
N − 1

)
(3.16)

The default for the α parameter is 0.16.

BlH Blackmann-Harris window (see the ‘alpha0-3’ options)

wBlH [n] = α0 − α1 cos
(

2πn
N − 1

)
+ α2 cos

(
4πn
N − 1

)
− α3 cos

(
6πn
N − 1

)
(3.17)

The defaults for the α parameters are: α0 = 0.35875, α1 = 0.48829, α2 = 0.14128,
α3 = 0.01168

Lac Lanczos window (also known as ‘sinc’ window)

wLac[n] =
sin
(
π 2n

N−1 − 1
)

2n
N−1 − 1

(3.18)

sigma = <numeric> [Default: 0.4]
Standard deviation σ for the Gaussian window. Recommended: σ < 0.5

alpha0 = <numeric> [Default: 0]
Parameter α0 for Blackmann(-Harris) / Bartlett-Hann windows (optional!)

alpha1 = <numeric> [Default: 0]
Parameter α1 for Blackmann(-Harris) / Bartlett-Hann windows (optional!)

alpha2 = <numeric> [Default: 0]
Parameter α2 for Blackmann(-Harris) / Bartlett-Hann windows (optional!)

alpha3 = <numeric> [Default: 0]
Parameter α3 for Blackmann-Harris window (optional!)

alpha = <numeric> [Default: 0.16]
Parameter α for the Blackmann window

144 CHAPTER 3. REFERENCE SECTION

3.3.7 Functionals

Functionals are computed by the cFunctionals component documented in the next section. This
component contains various sub-components which implement the individual functionals groups.

cFunctionals

Description: This component applies functionals to a series of input frames and outputs one
a single static ‘summary’ vector. The length of this vector is independent of the length of the
input sequence. This component uses various cFunctional* sub-components, which implement
the actual functionality. The configuration options of these sub-components are documented
within this section.

Class hierarchy: cSmileComponent→ cDataProcessor→ cWinToVecProcessor→ cFunction-
als

Configuration options:

reader = <object of type ‘cDataReader’> The configuration of the cDataReader sub-component,
which handles the dataMemory interface for data input. See the documentation of ‘cDataReader’
for more information (section 3.3.2).

writer = <object of type ‘cDataWriter’> The configuration of the cDataWriter sub-component,
which handles the dataMemory interface for data output. See the documentation of
‘cDataWriter’ for more information (section 3.3.2).

buffersize = <numeric> [Default: 0]
The buffer size for the output level, in frames (default [0] = same as input level), this
option overwrites ‘buffersize sec’.

buffersize sec = <numeric> [Default: 0]
The buffer size for the output level, in seconds (default [0] = same as input level).

nameAppend = <string> [Default: ‘(null)’]
A string suffix to append to the input field names (default: empty)

copyInputName = <numeric> [Default: 1]
1 = copy the input name (and optionally append a suffix, see ‘nameAppend’ option)
0 = discard the input name and use only the ‘nameAppend’ string as new name.

frameMode = <string> [Default: ‘fixed’]
Specifies how to create frames:

fixed fixed frame size, given via the ‘frameSize’ option

full creates one frame at the end of the input only (off-line processing)

variable via smile message from another component (such as cTurnDetector (section 3.3.6)

list frame times list in config file (‘frameList’ option), or in external text file (‘frameList-
File’ option). Currently: UNIMPLEMENTED.

frameListFile = <string> [Default: ‘(null)’]
Filename of a file with a list of frame intervals to load. This should be a text file with

3.3. COMPONENT DESCRIPTION 145

a comma separated list of intervals on a single line: 1-10,11-20, etc., if no interval is
specified, i.e. no – is found then consecutive frames with the given number being the frame
length are assumed; first index is 0; use the suffix “s” after the numbers to specify intervals
in seconds (e.g. 0s-2.5s); use an ‘E’ instead of a number for ‘end of sequence’).

frameList = <string> [Default: ‘(null)’]
The list of frame intervals specified directly in the configuration file. This should be a
string of comma separated list of intervals on a single line: 1-10,11-20, etc., if no interval
is specified, i.e. no – is found then consecutive frames with the given number being the
frame length are assumed; first index is 0; use the suffix “s” after the numbers to specify
intervals in seconds (e.g. 0s-2.5s); use an ‘E’ instead of a number for ‘end of sequence’).

frameSize = <numeric> [Default: 0.025]
The frame size in seconds (0.0 = full input, same as ‘frameMode=full’).

frameStep = <numeric> [Default: 0]
The frame step (frame sampling period) in seconds (0 = set to the same value as ‘frame-
Size’)

frameSizeFrames = <numeric> [Default: 0]
The frame size in input level frames (=samples for a pcm/wave input level) (overrides
frameSize, if set and > 0).

frameStepFrames = <numeric> [Default: 0]
The frame step in input level frames (=samples for a pcm/wave input level) (overrides
frameStep, if set and > 0).

frameCenter = <numeric> [Default: 0]
The frame center in seconds, i.e. where frames are sampled (0=left), see ‘frameCenterSpe-
cial’ for examples on how the frame center options affect the sampling of frames.

frameCenterFrames = <numeric> [Default: 0]
The frame sampling center in input level frames (overrides ‘frameCenter’, if set), (0=left),
see ‘frameCenterSpecial’ for examples on how the frame center options affect the sampling
of frames.

frameCenterSpecial = <string> [Default: ‘left’]
The frame sampling center (overrides the other ‘frameCenter’ options, if set). The available
special frame sampling points as strings are:

left = sample at the beginning of the frame (the first frame will be sampled from 0 to
frameSize)

mid = sample in the middle of the frame middle (the first frame will be sampled from
-frameSize/2 to frameSize/2; values at negative indices are padded with zeros)

right = sample at the end of the frame (the first frame will be sampled from -frameSize
to 0; values at negative indices are padded with zeros, i.e. the first frame will be all
0s)

noPostEOIprocessing = <numeric> [Default: 1]
1 = do not process incomplete windows at the end of the input, i.e. all created frames
have been sampled from segments that are exactly ‘frameSize’ in length. Excess data at
the end of the input will be discarded. This is only relevant for off-line processing.

146 CHAPTER 3. REFERENCE SECTION

functionalsEnabled[] = <string> [Default: ‘(null)’]
A string array that defines the list of enabled functionals. The following functionals are
available (sub-components) (Attention: the names are case-SENSITIVE!):

Name of group Description
1. Extremes extreme values (max, min, range, maxPos, minPos, ...)
2. Means various mean values (arithmetic, geometric, quadratic, ...)
3. Peaks number of peaks and various measures associated with

peaks, such as mean of peaks, mean distance between peaks,
etc. Peak finding is based on : x(t− 1) < x(t) > x(t+ 1).

4. Segments number of segments based on simple delta thresholding
5. Onset relative position of the first onset and the last offset based

on simple thresholding. Number of onsets and offsets can
also be computed.

6. Moments statistical moments (standard deviation, variance, skewness,
kurtosis)

7. Crossings zero-crossing rate, mean crossing rate, dc offset, min, and
max value

8. Percentiles percentile values and inter-percentile ranges (including quar-
tiles, etc.). This component sorts the input array and then
chooses the value at the index closest to p*segment length
for the p-th percentile (p=0..1).

9. Regression linear and quadratic regression coefficients and correspond-
ing linear and quadratic regression errors. Linear regres-
sion line: y = mx + t ; quadratic regression parabola:
y = ax2 + bx + c. Algorithm: Minimum mean square er-
ror, direct analytic solution of system of equations. This
component also computes the centroid of the contour.

10. Samples sampled values at equidistant frames
11. Times up- and down-level times + rise and fall, left- and right-curve

times, duration, etc.
12. DCT Discrete Cosine Transformation (DCT) (type-II) coefficients

nonZeroFuncts = <numeric> [Default: 0]
If this is set to 1, functionals are only applied to input values unequal 0.
If this is set to 2, functionals are only applied to input values greater than 0. For the
default value of this option (0) functionals are applied to all input values.

functNameAppend = <string> [Default: ‘(null)’]
Specifies a string suffix to append to the functional name (which is appended to the input
feature name)

masterTimeNorm = <string> [Default: ‘segment’]
This option specifies how all components should normalise times, if they generate output
values related to durations. You can change the ‘norm’ parameter of individual func-
tional components to overwrite this master value. You can choose one of the following
normalisation methods:

segment (or: ‘turn’) normalise to the range 0..1, the result is a relative length as a
fraction of the turn length.

second absolute time in seconds.

3.3. COMPONENT DESCRIPTION 147

frame absolute time in number of frames of the input level.

The following paragraphs describe the individual functional extractor components’ options.
These components are called ‘cFunctionalXXXX’ in openSMILE, e.g. ‘cFunctionalExtremes’,
etc. For simplicity we only refer to the last part of the name (the ‘XXXX’ part), e.g. ‘Ex-
tremes’. This is also the name of the configuration option type. This means to configure the
options of the ‘cFunctionalExtremes’ component in a ‘cFunctionals’ component you must use
the syntax Extremes.option = value.

Crossings . The ‘cFunctionalCrossings’ component computes the zero-crossing and mean-
crossing rates, and the arithmetic mean (optionally).

Crossings.zcr = <numeric> [Default: 1]
1/0=enable/disable output of zero crossing rate. [field name suffix: zcr].

Crossings.mcr = <numeric> [Default: 1]
1/0=enable/disable output of mean crossing rate (the rate at which the signal crosses its
arithmetic mean value, same as zcr for mean normalised signals). [field name suffix: mcr].

Crossings.amean = <numeric> [Default: 0]
1/0=enable/disable output of arithmetic mean. [field name suffix: amean].

DCT . The ‘cFunctionalDCT’ component applies a discrete cosine transformation of type-II
to the input contour. The output field has the suffix ‘DCTn’ appended (where n is the index of
the DCT coefficient). The range of the DCT coefficients can be configured via the configuration
options:

DCT.firstCoeff = <numeric> [Default: 1]
The first DCT coefficient to compute (coefficient 0 corresponds to the DC component).

DCT.lastCoeff = <numeric> [Default: 6]
The last DCT coefficient to compute.

DCT.nCoeffs = <numeric> [Default: 6]
An alternative option to ‘lastCoeff’ (this option overwrites ‘lastCoeff’, if it is set): the
number DCT coefficient to compute (lastCoeff = firstCoeff+nCoeffs-1).

Extremes . The ‘cFunctionalExtremes’ component computes extreme values and associated
attributes. The list of available configuration options is the documentation of the attributes
that can be computed:

Extremes.max = <numeric> [Default: 1]
1/0=enable/disable output of maximum value. [field name suffix: max]

Extremes.min = <numeric> [Default: 1]
1/0=enable/disable output of minimum value. [field name suffix: min]

Extremes.range = <numeric> [Default: 1]
1/0=enable/disable output of range (max-min). [field name suffix: range]

148 CHAPTER 3. REFERENCE SECTION

Extremes.maxpos = <numeric> [Default: 1]
1/0=enable/disable output of position of maximum value (relative to the input segment
length, in seconds, or in frames, see the ‘norm’ option or the ‘masterTimeNorm’ option of
the cFunctionals parent component). [field name suffix: maxpos]

Extremes.minpos = <numeric> [Default: 1]
1/0=enable/disable output of position of minimum value (relative to the input segment
length, in seconds, or in frames, see the ‘norm’ option or the ‘masterTimeNorm’ option of
the cFunctionals parent component). [field name suffix: minpos]

Extremes.amean = <numeric> [Default: 0]
1/0=enable/disable output of the arithmetic mean. [field name suffix: mean]

Extremes.maxameandist = <numeric> [Default: 1]
1/0=enable/disable output of (maximum value minus arithmetic mean). [field name suffix:
maxameandist]

Extremes.minameandist = <numeric> [Default: 1]
1/0=enable/disable output of (arithmetic mean - minimum value). [field name suffix:
minameandist]

Extremes.norm = <string> [Default: ‘frames’]
This option specifies how this component should normalise times (see also the ‘masterTi-
meNorm’ option in cFunctionals):

segment (or: ‘turn’) normalise to the range 0..1, the result is the relative length wrt. to
the segment length.

second absolute time in seconds.

frame absolute time in number of frames of the input level.

Means . The ‘cFunctionalMeans’ component computes various mean values. The list of
available configuration options is the documentation of the available mean values:

Means.amean = <numeric> [Default: 1]
1/0=enable/disable output of arithmetic mean. [field name suffix: amean].

Means.absmean = <numeric> [Default: 1]
1/0=enable/disable output of arithmetic mean of absolute values. [field name suffix:
absmean].

Means.qmean = <numeric> [Default: 1]
1/0=enable/disable output of quadratic mean. [field name suffix: qmean].

Means.nzamean = <numeric> [Default: 1]
1/0=enable/disable output of arithmetic mean (of non-zero values only). [field name suffix:
nzamean].

Means.nzabsmean = <numeric> [Default: 1]
1/0=enable/disable output of arithmetic mean of absolute values (of non-zero values only).
[field name suffix: nzabsmean].

3.3. COMPONENT DESCRIPTION 149

Means.nzqmean = <numeric> [Default: 1]
1/0=enable/disable output of quadratic mean (of non-zero values only). [field name suffix:
nzqmean].

Means.nzgmean = <numeric> [Default: 1]
1/0=enable/disable output of geometric mean (of absolute values of non-zero values only).
[field name suffix: nzgmean].

Means.nnz = <numeric> [Default: 1]
1/0=enable/disable output of number of non-zero values (relative to the input segment
length, in seconds, or in frames, see the ’norm’ option or the ’masterTimeNorm’ option of
the cFunctionals parent component). [field name suffix: nnz].

Means.norm = <string> [Default: ‘frames’]
This option specifies how this component should normalise times (see also the ‘masterTi-
meNorm’ option in cFunctionals):

segment (or: ‘turn’) normalise to the range 0..1, the result is the relative length wrt. to
the segment length.

second absolute time in seconds.

frame absolute time in number of frames of the input level.

Moments . The ‘cFunctionalMoments’ component computes the statistical moments, arith-
metic mean, standard deviation, variance, skewness, and kurtosis.

Moments.variance = <numeric> [Default: 1]
1/0=enable/disable output of variance. [field name suffix: variance]

Moments.stddev = <numeric> [Default: 1]
1/0=enable/disable output of standard deviation. [field name suffix: stddev]

Moments.skewness = <numeric> [Default: 1]
1/0=enable/disable output of skewness. [field name suffix: skewness]

Moments.kurtosis = <numeric> [Default: 1]
1/0=enable/disable output of kurtosis. [field name suffix: kurtosis]

Moments.amean = <numeric> [Default: 0]
1/0=enable/disable output of arithmetic mean. [field name suffix: amean]

Onset . The ‘cFunctionalOnset’ component finds the first onset and the last offset in the
contour, that is the position of the first value which is above a specified threshold, and the
position of the first value which is below a given threshold and all values following this value
up to the end of the segment are also below this threshold. Moreover, the number of onsets in
total can be computed (the number of times when the signal changes from below to above the
threshold).

Onset.threshold = <numeric> [Default: 0]
The absolute threshold used for onset/offset detection (i.e. the first onset will be where
the input value is above the threshold for the first time).

150 CHAPTER 3. REFERENCE SECTION

Onset.thresholdOnset = <numeric> [Default: 0]
A separate threshold only for onset detection. This will override the ‘threshold’ option, if
set.

Onset.thresholdOffset = <numeric> [Default: 0]
A separate threshold only for offset detection. This will override the ‘threshold’ option, if
set.

Onset.useAbsVal = <numeric> [Default: 0]
1/0=yes/no : apply thresholds to absolute input value instead of original input value.

Onset.onsetPos = <numeric> [Default: 0]
1/0=enable/disable output of relative position (relative to the input segment length, in
seconds, or in frames, see the ‘norm’ option or the ‘masterTimeNorm’ option of the ‘cFunc-
tionals’ parent component) of first onset found. [field name suffix: onsetPos].

Onset.offsetPos = <numeric> [Default: 0]
1/0=enable/disable output of position of last offset found (relative to the input segment
length, in seconds, or in frames, see the ‘norm’ option or the ‘masterTimeNorm’ option of
the ‘cFunctionals’ parent component). [field name suffix: offsetPos]

Onset.numOnsets = <numeric> [Default: 1]
1/0=enable/disable output of the number of onsets found. [field name suffix: numOnsets]

Onset.numOffsets = <numeric> [Default: 0]
1/0=enable/disable output of the number of offsets found (this is usually redundant and
the same as ‘numOnsets’, use this only for special applications where it may make sense
to use it). [field name suffix: numOffsets]

Onset.norm = <string> [Default: ‘segment’]
This option specifies how this component should normalise times (see also the ‘masterTi-
meNorm’ option in cFunctionals):

segment (or: ‘turn’) normalise to the range 0..1, the result is the relative length wrt. to
the segment length.

second absolute time in seconds.

frame absolute time in number of frames of the input level.

Peaks . The ‘cFunctionalPeaks’ component computes the number of peaks and various mea-
sures associated with peaks, such as mean of peaks, mean distance between peaks, etc. Peak
finding is based on x(t− 1) < x(t) > x(t+ 1). The list of available configuration options is the
documentation of the available peak associated measures:

Peaks.numPeaks = <numeric> [Default: 1]
1/0=enable/disable output of the number of peaks. [field name suffix: numPeaks]

Peaks.meanPeakDist = <numeric> [Default: 1]
1/0=enable/disable output of mean distance between peaks (relative to the input segment
length, in seconds, or in frames, see the ‘norm’ option or the ‘masterTimeNorm’ option of
the ‘cFunctionals’ parent component). [field name suffix: meanPeakDist]

3.3. COMPONENT DESCRIPTION 151

Peaks.peakMean = <numeric> [Default: 1]
1/0=enable/disable output of arithmetic mean of peaks. [field name suffix: peakMean]

Peaks.peakMeanMeanDist = <numeric> [Default: 1]
1/0=enable/disable output of (aritmetic mean of peaks - aritmetic mean of all values).
[field name suffix: peakMeanMeanDist]

Peaks.norm = <string> [Default: ‘frames’]
This option specifies how this component should normalise times (see also the ‘masterTi-
meNorm’ option in cFunctionals):

segment (or: ‘turn’) normalise to the range 0..1, the result is the relative length wrt. to
the segment length.

second absolute time in seconds.

frame absolute time in number of frames of the input level.

Percentiles . The ‘cFunctionalPercentiles’ component can compute quartiles, inter-quartile
ranges, and an arbitrary number of user-defined percentiles and percentile ranges. In order to
efficiently compute percentiles, the values in the input segment are sorted once using a quicksort
algorithm.

Percentiles.quartiles = <numeric> [Default: 1]
1/0=enable/disable output of all quartiles (overrides individual settings quartile1, quar-
tile2, and quartile3).

Percentiles.quartile1 = <numeric> [Default: 0]
1/0=enable/disable output of quartile1 (0.25). [field name suffix: quartile1].

Percentiles.quartile2 = <numeric> [Default: 0]
1/0=enable/disable output of quartile2 (0.50). [field name suffix: quartile2].

Percentiles.quartile3 = <numeric> [Default: 0]
1/0=enable/disable output of quartile3 (0.75). [field name suffix: quartile3].

Percentiles.iqr = <numeric> [Default: 1]
1/0=enable/disable output of all inter-quartile ranges (overrides individual settings iqr12,
iqr23, and iqr13).

Percentiles.iqr12 = <numeric> [Default: 0]
1/0=enable/disable output of inter-quartile range 1-2 (quartile2-quartile1). [field name
suffix: iqr12].

Percentiles.iqr23 = <numeric> [Default: 0]
1/0=enable/disable output of inter-quartile range 2-3 (quartile3-quartile2). [field name
suffix: iqr23].

Percentiles.iqr13 = <numeric> [Default: 0]
1/0=enable/disable output of inter-quartile range 1-3 (quartile3-quartile1). [field name
suffix: iqr13].

152 CHAPTER 3. REFERENCE SECTION

Percentiles.percentile[] = <numeric> [Default: 0.9]
Array of p*100 percent percentiles to compute. p = 0..1. Array size indicates the number
of total percentiles to compute (excluding quartiles), duplicate entries are not checked for
and not removed : percentile[n] = p (p=0..1). [field name suffix: percentile[p]].

Percentiles.pctlrange[] = <string> [Default: ‘0-1’]
Array that specifies which inter percentile ranges to compute. A range is specified as ’n1-n2’
(where n1 and n2 are the indicies of the percentiles as they appear in the percentile[] array,
starting at 0 with the index of the first percentile). [field name suffix: pctlrange[a-b]].

Percentiles.interp = <numeric> [Default: 1]
If set to 1, percentile values will be linearly interpolated, instead of being rounded to the
nearest index in the sorted input array.

Regression . The ‘cFunctionalRegression’ component computes the parameters of a linear
and a quadratic approximation of the segment contour that approximates the contour with the
minimal quadratic error. Moreover, the linear and quadratic approximation errors for the linear
and quadratic approximations can be computed. As a by-product the centroid (centre of gravity)
of the contour is computed.

Regression.linregc1 = <numeric> [Default: 1]
1/0=enable/disable output of slopem (linear regression line). [field name suffix: linregc1]

Regression.linregc2 = <numeric> [Default: 1]
1/0=enable/disable output of offset t (linear regression line). [field name suffix: linregc2]

Regression.linregerrA = <numeric> [Default: 1]
1/0=enable/disable output of linear error between contour and linear regression line. [field
name suffix: linregerrA]

Regression.linregerrQ = <numeric> [Default: 1]
1/0=enable/disable output of quadratic error between contour and linear regression line.
[field name suffix: linregerrQ]

Regression.qregc1 = <numeric> [Default: 1]
1/0=enable/disable output of quadratic regression coefficient 1 (a). [field name suffix:
qregc1]

Regression.qregc2 = <numeric> [Default: 1]
1/0=enable/disable output of quadratic regression coefficient 2 (b). [field name suffix:
qregc2]

Regression.qregc3 = <numeric> [Default: 1]
1/0=enable/disable output of quadratic regression coefficient 3 (c = offset). [field name
suffix: qregc3]

Regression.qregerrA = <numeric> [Default: 1]
1/0=enable/disable output of linear error between contour and quadratic regression line
(parabola). [field name suffix: qregerrA]

Regression.qregerrQ = <numeric> [Default: 1]
1/0=enable/disable output of quadratic error between contour and quadratic regression
line (parabola). [field name suffix: qregerrQ]

3.3. COMPONENT DESCRIPTION 153

Regression.centroid = <numeric> [Default: 1]
1/0=enable/disable output of centroid of contour (this is computed as a by-product of the
regression coefficients). [field name suffix: centroid]

Regression.normRegCoeff = <numeric> [Default: 0]
1/0=enable/disable normalisation of regression coefficients. If enabled, the coefficients are
scaled (multiplied by the contour length) so that a regression line or parabola approxi-
mating the contour can be plotted over an x-axis range from 0 to 1, i.e. this makes the
coefficients independent of the contour length (a longer contour with a lower slope will then
have the same ‘m’ (slope) linear regression coefficient as a shorter but steeper slope). In
detail the following scaling will be performed (N is the number of elements in the contour,
i.e. the contour length):

a′ = N2 · a
b′ = N · b

c′ = c

m′ = N ·m
t′ = t

Samples . The ‘cFunctionalSamples’ component grabs sample values at pre-defined relative
positions within the input segment (such as beginning, middle, end, etc.).

Samples.samplepos = <numeric> [Default: 0]
Array of positions of samples to copy to the output. The size of this array determines the
number of sample frames that will be passed to the output. The given positions must be
in the range from 0 to 1, indicating the relative position within the input segment, where
0 is the beginning and 1 the end of the segment.

Segments . The ‘cFunctionalSegments’ component detects continuous segments based on
delta-thresholding. The beginning of a segment is thereby detected by a rise in the values (dif-
ference of the current value minus a long term moving average (computed over segmentSize/(0.5
* maxNumSeg) frames) which is above a threshold relative to the range of the values in the
input segment.

Segments.maxNumSeg = <numeric> [Default: 20]
Maximum number of segments to detect.

Segments.rangeRelThreshold = <numeric> [Default: 0.2]
The segment threshold relative to the signal’s range (max-min).

Segments.numSegments = <numeric> [Default: 1]
1/0=enable/disable output of the number of detected segments (the output value is in the
range 0..1, due to normalisation with maxNumSeg). [field name suffix: numSegments]

Segments.meanSegLen = <numeric> [Default: 1]
1/0=enable/disable output of the mean segment length (relative to the input segment
length, in seconds, or in frames, see the ‘norm’ option or the ‘masterTimeNorm’ option of
the ‘cFunctionals’ parent component). [field name suffix: meanSegLen]

154 CHAPTER 3. REFERENCE SECTION

Segments.maxSegLen = <numeric> [Default: 1]
1/0=enable/disable output of the maximum segment length (relative to the input segment
length, in seconds, or in frames, see the ‘norm’ option or the ‘masterTimeNorm’ option of
the ‘cFunctionals’ parent component). [field name suffix: maxSegLen]

Segments.minSegLen = <numeric> [Default: 1]
1/0=enable/disable output of the minimum segment length (relative to the input segment
length, in seconds, or in frames, see the ‘norm’ option or the ‘masterTimeNorm’ option of
the ‘cFunctionals’ parent component). [field name suffix: minSegLen]

Segments.norm = <string> [Default: ‘frames’]
This option specifies how this component should normalise times (see also the ‘masterTi-
meNorm’ option in cFunctionals):

segment (or: ‘turn’) normalise to the range 0..1, the result is the relative length wrt. to
the segment length.

second absolute time in seconds.

frame absolute time in number of frames of the input level.

Times . The ‘cFunctionalTimes’ component computes various time statistics, such as up- and
down-level times (i.e. the time the signal is above or below a certain percentage of its total
range).

Times.upleveltime25 = <numeric> [Default: 1]
(1/0=yes/no) compute time where signal is above (0.25*range+min). [field name suffix:
upleveltime25]

Times.downleveltime25 = <numeric> [Default: 1]
(1/0=yes/no) compute time where signal is below (0.25*range+min). [field name suffix:
upleveltime25]

Times.upleveltime50 = <numeric> [Default: 1]
(1/0=yes/no) compute time where signal is above (0.50*range+min). [field name suffix:
upleveltime50]

Times.downleveltime50 = <numeric> [Default: 1]
(1/0=yes/no) compute time where signal is below (0.50*range+min). [field name suffix:
downleveltime50]

Times.upleveltime75 = <numeric> [Default: 1]
(1/0=yes/no) compute time where signal is above (0.75*range+min). [field name suffix:
upleveltime75]

Times.downleveltime75 = <numeric> [Default: 1]
(1/0=yes/no) compute time where signal is below (0.75*range+min). [field name suffix:
downleveltime75]

Times.upleveltime90 = <numeric> [Default: 1]
(1/0=yes/no) compute time where signal is above (0.90*range+min). [field name suffix:
upleveltime90]

3.4. FEATURE NAMES 155

Times.downleveltime90 = <numeric> [Default: 1]
(1/0=yes/no) compute time where signal is below (0.90*range+min). [field name suffix:
downleveltime90]

Times.risetime = <numeric> [Default: 1]
(1/0=yes/no) compute time during which the signal is rising. [field name suffix: risetime]

Times.falltime = <numeric> [Default: 1]
(1/0=yes/no) compute time during which the signal is falling. [field name suffix: falltime]

Times.leftctime = <numeric> [Default: 1]
(1/0=yes/no) compute time during which the signal has left curvature. [field name suffix:
leftctime]

Times.rightctime = <numeric> [Default: 1]
(1/0=yes/no) compute time during which the signal has right curvature. [field name suffix:
rightctime]

Times.duration = <numeric> [Default: 1]
(1/0=yes/no) compute total contour duration time, in frames (or seconds, if (time)norm==seconds).
. [field name suffix: duration]

Times.upleveltime[] = <numeric> [Default: 0.9]
compute time where signal is above X*range : upleveltime[n]=X . [field name suffix:
upleveltime[n]]

Times.downleveltime[] = <numeric> [Default: 0.9]
compute time where signal is below X*range : downleveltime[n]=X . [field name suffix:
downleveltime[n]]

Times.norm = <string> [Default: ‘frames’]
This option specifies how this component should normalise times (see also the ‘masterTi-
meNorm’ option in cFunctionals):

segment (or: ‘turn’) normalise to the range 0..1, the result is the relative length wrt. to
the segment length.

second absolute time in seconds.

frame absolute time in number of frames of the input level.

3.4 Feature names

This section will soon contain a table which maps feature names (as generated by default set-
tings), onto a corresponding description or links to the component reference sections where the
features are described. Please note, that this information is also contained in the documentation
of each component, but is summarised here for easier viewing. You must also be aware that most
feature names in openSMILE can be changed via options in the configuration files. Thus, the
names listed in this section might not be those you get with your configuration file. However, we
consider it a bad practice to use your own names for the features if there is no obvious reason to
do so. Using the default names ensures compatibility of feature files and feature selection lists.

openSMILE follows a strict naming scheme for features (data fields). Each component (ex-
cept the sink components), assigns names to its output fields. All cDataProcessor descendants

156 CHAPTER 3. REFERENCE SECTION

have two options to control the naming behaviour, namely ‘nameAppend’ and ‘copyInputName’.
‘nameAppend’ specifies a suffix which is appended to the field name of the previous level. A ‘–’
is inserted between the two names (if ‘nameAppend’ is not empty or (null)). ‘copyInputName’
controls whether the input name is copied and the suffix ‘nameAppend’ and any internal hard-
coded names are appended (if it is set to 1), or if the input field name is discarded and only the
component’s internal names and an appended suffix are used.

The field naming scheme is illustrated by the following example. Let’s assume you start
with an input field ‘pcm’ (as the cWaveSource component (section 3.3.3) generates it). If you
then compute delta regression coefficients from it, you end up with the name ‘pcm-de’. If you
apply functionals (extreme values max and min only), then you will end up with two new fields:
‘pcm-de-max’ and ‘pcm-de-min’. Theoretically, if the ‘copyInputName’ is always set, and a
suitable suffix to append is specified, the complete processing chain can be deducted from the
field name. In practice, however, this would lead to quite long and redundant feature names,
since most speech and music features base on framing, windowing, and spectral transformation.
Thus, most of these components do not append anything to the input name and do only copy the
input name. In order to discard the ‘pcm’ from the wave input level, components that compute
features such as mfcc, pitch, etc. discard the input name and use only a hard-coded name or a
name controlled via ‘nameAppend’.

Chapter 4

Developer’s Documentation

The developer’s documentation has not yet been included in this document. Fragments of the
documentation covering various aspects briefly are found in the doc/developer directory.

Writing plugins If you are interested in writing plugins for openSMILE, read the document
doc/developer/implementing components.txt and write a component cpp and hpp file. Then
have a look at the Makefiles (Linux) in the plugindev directory for building your plugin on linux,
and the Visual Studio Solution files (openSmilePlugin) for windows in the ide/vs05/ folder.

The main source file of a plugin is the plugindev/pluginMain.cpp file. This file includes
the individual component files this plugin shall contain, similar to the component list in the
componentManager.cpp file, which manages the openSMILE built-in components.

157

158 CHAPTER 4. DEVELOPER’S DOCUMENTATION

Chapter 5

Additional Support

If you have questions which are not covered by this documentation please contact Florian Eyben
(eyben at tum.de).

159

160 CHAPTER 5. ADDITIONAL SUPPORT

Chapter 6

Acknowledgement

The development of openSMILE and openEAR has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under grant agreement No. 211486
(SEMAINE).

161

162 CHAPTER 6. ACKNOWLEDGEMENT

Bibliography

[EWS09] Florian Eyben, Martin Wöllmer, and Björn Schuller. openear - introducing the
munich open-source emotion and affect recognition toolkit. In Proceedings of the
4th International HUMAINE Association Conference on Affective Computing and
Intelligent Interaction 2009 (ACII 2009), volume I, pages 576–581. IEEE, 2009.

[SER07] Björn Schuller, Florian Eyben, and Gerhard Rigoll. Fast and robust meter and tempo
recognition for the automatic discrimination of ballroom dance styles. In Proceedings
ICASSP 2007, Honolulu, Hawaii, 2007.

[SSB09] Björn Schuller, S. Steidl, and Anton Batliner. The interspeech 2009 emotion chal-
lenge. In Interspeech (2009), ISCA, Brighton, UK, 2009.

[YEG+06] S. Young, G. Evermann, M. Gales, T. Hain, D. Kershaw, X. Liu, G. Moore, J. Odell,
D. Ollason, D. Povey, V. Valtchev, and P. Woodland. The HTK book (v3.4). Cam-
bridge University Press, Cambridge, UK, December 2006.

163

	About openSMILE
	What is openSMILE?
	Who needs openSMILE?
	Licensing
	Capabilities - Overview

	Using openSMILE
	Obtaining and Installing openSMILE
	Compiling the openSMILE source code
	Build instructions for the impatient
	Compiling on Linux/Mac
	Compiling on Linux/Mac with PortAudio
	Compiling on Windows
	Compiling on Windows with PortAudio

	Extracting your first features
	What is going on inside of openSMILE
	Incremental processing
	Smile messages
	openSMILE terminology

	Default feature sets
	Chroma features
	MFCC features
	PLP features
	Prosodic features
	Extracting features for emotion recognition

	Using Portaudio for live recording/playback
	Visualising data with Gnuplot

	Reference section
	General usage - SMILExtract
	Understanding configuration files
	Enabling components
	Configuring components
	Including other configuration files
	Linking to command-line options
	Defining variables
	Comments

	Component description
	cComponentManager
	Basic data memory and interface components
	Data sources
	Data sinks
	Live data sinks (classifiers)
	Low-level features and signal processing
	Functionals

	Feature names

	Developer's Documentation
	Additional Support
	Acknowledgement

