
Bachelor thesis for Creative Technology

University of Twente

Dynamic Audio Solutions for
Games

Author:
Robert Blaauboer
s1202014
August 2014

Supervisor:
Dennis Reidsma

Abstract
Music in games is a potent way to provide feedback to the player but, due to
their respectively often linear and non-linear nature, there are certain systems
that must be used in order to do so. This paper outlines two possible systems
to help provide musical feedback in games. One, called Procedural Mixing,
uses pre-composed segments to generate a score based on the input of multiple
real-time descriptive parameters. A system of three algorithmic rules is used
to ensure that the score sounds musical and cohesive. The other, called Music
Timing, shifts the timing of in-game events such that they align with strong
beats in the score. A user test is conducted with a proof of concept in order
to test possible influence of such a system. Both solutions show potential for
further development. When a strongly timed orchestral score and game-events
are well aligned there is potential for a positive influence on the impact of in-
game events. The Procedural Mixing system works well considering the current
implementation and needs more content and rules in order to provide better
feedback to in-game situations.

Chapter 1

Introduction

Sometimes things fall into place and keep you in a flow. Everything seems to
complement each other and you are completely immersed in the world. Or, as
the film industry has known for a long time, immersed in a movie. Take for
example the process known as Mickey Mousing where every action is accompa-
nied by a musical element. Only musical cues are used and still everything feels
accentuated. In the average film, music is written according to cues in a reel.
These cues can be all sorts of important events from the reveal of the killers
motive to the final uppercut in a fight scene. All these important events are
underlined — and are able to be underlined since film is a linear medium.

Both sound and film, however, are not required to react to user input or random
events, two features that are very much a part of games. There is a certain chal-
lenge in attempting to unlock the full expressive power of the combination of
games and music. This would involve combining the accentuating of important
events and overal expressive power of music in film with a game that is inter-
active and has its own random game events. There are several solutions that
can be examined in the pursuit of solving this challenge. One solution might
be to create a score without a steady rhythm so new parts can be introduced
at any moment without sounding abrupt. Such a score can be modified on the
fly according to environmental factors or events triggered by the player. This
can work quite well in calmer games or games without rhythmic music as an
artistic choice (as is the case with Dishonored (Arkane Studios, 2012)). Still,
battle scenes might be left a little stale and uninspiring if a driving beat is left
out. Another option, and one of the personal contributions that will be further
explored in this thesis, would be to have the music relay information back to
the game. If the game has knowledge of the nearest beat in the music it can
shift the timing of certain events such, that musical stingers can be introduced
in time with the current music (game-follows-music). This keeps the flow of the
music going and allows for accentuating important events.

1

There is another option which is a reverse of the beforementioned option. Here,
the result would be a system where game events determine which music is
playing (music-follows-game). An ideal combination would be music with film
quality expression, carefully created by a composer, with the interactivity and
adaptivity1 of procedurally generated audio. More about this in the Related
Work.

The rest of this thesis is structured as follows. In the next section some general
related work will be discussed as well as related work specific to the two options
explored in this thesis. We then move on the explanation of the Procedural
Mixing system. This is followed by an explanation and user test description of
the Music Timing system. Then a short recap and final remarks will be supplied
in the Discussion and Future Work.

1Collins [9] defines interactivity as directly influenced by the player and adaptivity as
influenced by the surroundings and game environment.

Chapter 2

Related Work

In this section several relevant and interesting music systems will be discussed.
The requirements for the two options explored in this thesis will follow from the
weak and strong points of these systems.

2.1 Related Work - General

While dynamic audio middleware, in which audio reacts to for example player
input, exists and is available for licensing, some game studios choose to imple-
ment their own system for interactive audio. Though the cost of initial effort
is higher, it allows for tailoring the system to the kind of game being devel-
oped. For example, the latest iteration of the snowboarding game SSX (EA
Canada, 2012) uses a system called the Realtime User Remix System[5] or in
short, RUMR (later changed to Harmony) where users have the choice to import
their own music. Runtime parameters are used to control several effects such as
sampling, EQ filtering and other DSP effects. A beat detection plugin is used to
establish a map for remixing these songs. Parameters include the time a player
spends in the air or on a rail. These effects accentuate the players actions and
can make them feel more impactful. In addition, the fact that the player can
choose their own music also increases their feeling of agency[16].

2.2 Related Work - Procedural Mixing

2.2.1 Borderlands 2

In the FPS game Borderlands 2 (Gearbox Software, 2012) you roam the waste-
land as a vault/bounty hunter. The music system makes use of a context pool

3

Figure 2.1: Context Pool Diagram of Borderlands as explained in [22]

and a constant decaying parameter during battle scenes (see Figure 2.1, taken
from [22].

Several key values such as enemy level, amount of enemies and player health
are put into the context pool. Together these values determine the excitement
and danger that should be present in the music. In some cases the level of
danger may not be high enough to even initiate combat music. After combat
the excitement parameter will slowly decay and bring the music back to an
ambient mood. Because this happens slowly it is possible to have gaps between
combat gameplay sections without the combat music ending altogether. This
helps maintain a constant level of excitement.

2.2.2 Psai

The psai system[4] is an audio system build specifically for interactive music.
It deals with pre-composed music segments that have been given an intensity
parameter and are linked to a specific theme. This theme can be any of six
types. First, there is the Basic Mood, this is general background music, and
Basic Mood Alteration, which is an enhancement of the Basic Mood for locations
that need emphasis. Then there is the Dramatic Event, which interrupts the
Basic Mood immediately and can be triggered to emphasize important moments
of dialogue. The Action Event interrupts the previous themes immediately and
is fit for combat. The Shock Event will interrupt any theme and is used for a
sudden attack or death. Lastly, there is the Highlight Layer which is the only
theme that can play simultaneously with another theme. The entire system
can be implemented into Unity and be set up to interact with the game worl
d. It seems to be quite similar to the system used in Borderlands 2 since the
intensity of the music has a constant drop. The fact that some themes can
react immediately to a situation is beneficial to the player feedback on in-game

events and the combination of different themes for different areas allows for a
wide variety of music for any area. One must be careful however to make the
conte nt pool sufficiently large for every level of intensity in order to combat
listener fatigue[9] during for example a battle sequence of more than five minutes
since the segments themselves are pre-composed and dont change. Another nice
addition is the pairing of highlight layers with themes. This ensures that the
extra layer fits harmonically but does limit the amount of change one can have
within a theme since it all has to fit with the same highlight layer.

2.2.3 Proteus

Whether Proteus(Curve Studios, 2013) is a game or an interactive experience
depends on your definition of games. In Proteus a procedurally generated en-
vironment can be explored which is fully voiced through all sorts of musical
cues. When you get close to a frog, it will jump away and trigger a short two-
note melody. This is the case for everything you encounter in the immersive
world. Depending on parameters such as time of the day, location and ob-
jects in the environment the music will change. While parts of the music have
pre-composed melodies, large parts are also generated and together create the
synthesizer based score.

2.2.4 SimCell

”SimCell(Strange Loop Games, 2013) is an educational game meant to teach
high-school students about the human cell [17]. The music is inspired by the
generative score in the game Spore(Maxis, 2008) . It is being generated real-
time in a program called PureData[20] based on parameters in the game. A
couple of PureData instrument patches created by Martin Brinkmann[8] are
used to play several melodies. Different scenarios have different pre-composed
note sequences. The specific timbres the melodies have are determined by the in-
game parameters and their instruments. The entire score sounds very ambient
and wide with a lot of reverb and echo. This works well with this specific game
since it fits with the organic nature of the simulation. When specific events
happen in the game it triggers a certain scene in the music which is specified to
accompany certain events. Besides being able to change scenes it is also possible
to change other parameters influencing the music such as the bpm.

2.2.5 Experience-Driven Procedural Music Generation for
Games

In this paper by D.Plans and D.Morelli[19], a system for experience driven
procedural music for games is described and tested. Frustration, challenge and
fun have been mapped as functions of the player’s gameplay data and have a

correlation to certain gameplay mechanics. In order to relate these functions
to music they have been mapped to an excitement parameter. Then five rules
are set up which have a certain effect on this excitement, an example being
musical novelty, where repetition of material provides low excitement and new
material provides excitement. A small set of phrases, called seeds, provide some
musical sequences from which a large number of variations are made. These
phrases, the melodic element, and the generated chord sequences, which is the
harmonic element, are then evaluated by fitness functions in order to determine
their excitement. The phrases and sequences with the minimum deviation from
the desired excitement are then chosen.

2.2.6 CBS: A Concept-Based Sequencer for Soundtrack
Composition

Four categories of algorithmic music composition have been described in this
paper by Jewell et al. [14]. The categories are as follows: Rule Based, where the
system must follow strict guidelines, Stochastic, using Markov Models to rep-
resent movements between states, Grammar-based, where musical elements are
encoded as grammar symbols in a string which is manipulated, Genetic, based
on Darwinian evolution and utilizing a collection of chromosomes. The rest of
the paper goes on to describe the main subject, the concept-based sequencer,
which is less relevant here.

2.2.7 General Remarks

Looking at the list above containing different solutions for interactive music it
can be seen that there can be many different approaches. Borderlands 2 and the
Psai system both make use of a decaying value which represents the amount of
action and allows for a smooth transition back to ambient music. This system
works well especially in combat sequences since it is possible to indicate the
amount of danger a player is in. If one would want the music to represent more
information, then more parameters/values can be implemented. This enables
the system to more accurately describe situations by, in a way, increasing its
vocabulary. Proteus and SimCell make use of procedurally generated music
combined with pre-composed note sequences. This keeps the music new to the
listener and also retains a recognizable melody. This is important when dealing
with generated music since the listener can quickly feel lost when there is no
recognizable element to ground the player. Due to its generated nature it is
able to react well to player actions and game events and thus provide the player
with feedback about his actions and surroundings. Still, both games are quite
unique in objective and style so this generated approach might be less suited to,
for example, a first person shooter style game. These games generally make use
of orchestral scores which are much less suited for procedural generation since
most scores are pre-recorded.Collins [10] says that having more procedural music

in games is likely, particularly with mood cues tagged to in-game events and
goes on to suggest that not the entire clip needs to be procedurally generated
but that algorithms could control instruments, melody lines or sections of the
piece. In another article [9] she mentions that there are difficulties in composing
dynamically, but that, for example, randomization can be used to alleviate this
difficulty. Still, it is important to make any dynamic music solution as easy to
compose for as possible.

Other systems such as Wwise[6] or Fmod[21] are presently audio delivery frame-
works for pre-recorded data rather than real sound engines capable of computing
sources from coherent models.[11]. They provide a way to call different music
sections and layers from the game engine which allows game studios to integrate
such an interactive music system without having to create their own. This can
be a good enough solution in many cases as not every game needs a custom
system or has the resources to create one.

Based on this related work, in this thesis a prototype of procedural mixing will
be built. This prototype uses the Rule-Based system [14] in order to attain
certain target variables in the generated music.

2.3 Related Work - Music Timing

Although academic related work fitting to Music Timing was searched for, this
could not be found. This leads to the assumption that not much research has
been done in this area, the area of musical feedback on visual elements, and
that there is an opportunity for research. Given the amount of communication
already possible between audio and game engines it is possible to achieve this in
modern games. For example, the game SSX uses beat tracking in order to remix
songs according to the player’s actions, but most likely, gameplay events are not
synchronized to the music beat. This might be an opportunity for improvement
especially when landing after a long jump. Currently a short moment of slow
motion is already implemented to increase the sense of impact when hitting the
ground. This moment could be tweaked slightly such that it aligns with a strong
beat in the music.

Kastbauer [15] says the following in an article in Game Developer Magazine:”There
lies a magical place somewhere between content creation and tool-side imple-
mentation, where the flow of game audio is fed back into the game in a two-way
street of communication. And that place lives just outisde the reach of most
toolsets”. While the Music Timing system is not a two-way street, it does
communicate in a direction that most systems don’t since the game follows the
music.

Chapter 3

Procedural Mixing

In this chapter a possible solution to some of the issues in interactive music sys-
tems will be described. The solution described here is called Procedural Mixing
and uses pre-composed segments and parameters to create music segments that
fit with in-game situations.

3.1 Objective

From the Related Work it follows that there are several issues in interactive
music that can be improved.

Firstly, the system should possess multiple parameters that can be used to
describe different gameplay scenarios and enable the system to provide well
fitting music . It has been shown that music can induce mood to a listener[18]
and thus it is imporant that the mood of the music fits the mood of the gameplay
scenario.

Secondly, the system should be able to create a score from pre-recorded musical
segments that provides feedback about in-game events. This is important since
many games make use of pre-recorded scores but in doing so are less able to
integrate a lot of the interactivity that is present in real-time generated music.
Current systems are able to shift between music segments based on in-game
situations but usually these transitions take too long or are abrupt and also
have a very limited amount of freedom. For example when using horizontal
composing1, a new segment has to be created for every situation that has dif-
ferent parameters. Collins [10] draws the link between composing in segments
of which the order is determined by the game and open form composition, also

1Horizontal composing is a way of creating a dynamic score. Musical segments are com-
posed and can transition into eachother directly or through the use of a transition segment.
The result is a score very similiar to film scores.

8

known as recombinatorial music, where the sections of music are composed but
the sequence in which the sections are performed is left to the the conductor,
performer or even a pair of dice. Due to each segment being divided into multi-
ple layers there is a large number of possible segments to play and thus makes
it quite likely that not every combination will be played.

Lastly, the system should make it easier for a composer to compose a dynamic
score that needs to have a large range of variations. Often a composer likes to
change the scale he is using or add a note or chord that is not part of the scale
used. While this can sound interesting it does become a problem when two parts
including notes or chords outside of the scale are played simultaneously and end
up sounding very dissonant while this not being the intention of the composer.
If the system knows which parts fit together and which don’t it can determine
which combinations sound as intended by the composer. Various approached
can be taken here such as grouping segments or identifying the correct matches
through machine learning. So in short, there are three main objectives for the
Procedural Mixing system and they are as follows: Provide multiple parameters
to accurately describe gameplay, Use these parameters to create a fitting score
from pre-composed segments, Utilize the segments in such a way that it is easier
for a composer to create the dynamic score.

3.2 Workings of prototype

A working prototype has been created by me in order to achieve the objectives
mentioned above. The way in which these objectives are achieved are described
below.

As mentioned previously, the music will be composed in segments. The length
of these segments determines the speed in which the system can react to in-
game situations and has to be decided based on the kind of gameplay that it
is accommodating. Every segment will be rated through parameters, which
are predetermined by the development team, and should be able to describe
every situation that the music needs to accomodate. In the current prototype
four parameters are used (Eg. Happy/sad, Epic/Scary etc.) and the gameplay
situation is a battle situation. Some possible situations that may have to be
accommodated are ”Player is winning”, ”Player is losing”,”Player is in severe
danger”,”Enemy is defeated”. Ideally the composer is the one that rates all his
composed segments in order to have the music stay true to his intent.

Additionally, the segment combination chosen to fit the current game parame-
ters have to fit together musically. This is solved through placing all segments
in a grouping hierarchy which describes which segments fit together and which
don’t. This grouping hierachy will also be created by the composer and allows
the composer to compose segments that are very different and let the compati-
bility be handled by the grouping hierarchy. In this way not all segments have

to fit together musically which makes it easier for the composer to compose a
dynamic score.

When all the composing, rating and grouping has been done the system has
content and information to work with. The game engine will supply data to
the procedural mixing system which translates these to the, in this case four,
parameters. Of the four categories of algoritmic composition specified by Jew-
ell et al. [14], this system falls into the Rule Based category because the sys-
tem creates combinations according to, currently three, main rules:”Parameter
Check”,”Compatibility” and ”Amount of Change”, which was already lightly
touched upon in the previous two paragraphs. If a combination of segments
passes all three rules it is approved and set as the next upcoming combina-
tion to play (See figure 3.1), unless a change in parameters happens before the
combination has started playing.

Figure 3.1: Diagram showing the Procedural Mixing Process.

The rest of this section explains these steps in more detail.

3.2.1 Parameter Check

This rule deals with selecting the right segments for the job. It monitors the
difference between the ideal parameter values, based on current in-game pa-
rameters, and the rated values of the segment. If this difference is lower than
the set threshold then the parameter will become satisfied. Parameters can be
satisfied multiple times so an ideal combination would be when the amount of
satisfied parameters is 16 (which is the maximum in this case, since there are
4 tracks and 4 parameters). But the satisfaction number can be lower while
still describing a fitting combination. Some tweaks are added to this check so
a chosen combination will feel more fitting to in-game changes. First a prior-
ity parameter is chosen. This is the parameter that has the largest difference
from the parameter values on which the currently playing combination is based.
This priority parameter has an individual minimum satisfaction number. This
remedies the possibility of large changes happening in a game while playing
a segment combination that satisfies all but the parameter most indicative of
these changes. The other tweak monitors the maximum parameter difference.

The parameter value difference between a segment and the ideal parameter may
not be larger than this number. This ensures that, while the segment may not
satisfy the parameter, it also does not dissatisfy it. Meaning for example that
when the ideal value is 8 on a scale where 0 is sad and 10 is happy, that the
segment is not too far towards the sad end of the scale. In this way large differ-
ences between segments can be prevented and allow for more cohesion between
segments in a combination.

3.2.2 Compatibility Check

This part monitors the compatibility between segments playing at the same
time.

The issue regarding ease of composition with regard to well sounding combina-
tions was approached as follows. Due to the scope of this prototype, dividing
the music into groups was opted for instead of machine learning. While the
latter might provide very interesting results, it is an intensive subject and is not
part of the scope of this research (see Discussion). It will be assumed that mu-
sic is composed in different tracks, each with its own timbre. This division can
be per instrument, instrument group(brass, woodwinds etc.), texture (rough,
smooth) or musical purpose(bass, accompaniment, melody). In this prototype
the latter has been used. For each track a range of different musical segments
are composed, each of the same length. The way in which these layers are com-
bined through rules fits the profile of a transformational algorithm more than
a generative algorithm as described by Wooller et al. [24]. Transformational
algorithms can control for example the instrumental parts that are added in-
stead of generating entire musical sequences, which would be generative. Each
segment is composed in such a way that it fits with all the segments from other
tracks within its group (see figure 3.2). While this does not completely solve
the difficulty of composing a dynamic score, it does make it easier by decreasing
the amount of segments that have to be compatible with each other.

All groups are arranged in a pre-determined hierarchy. The segments in the
lowest level groups are compatible only within their own group and can’t be
combined with segments from other groups on the same level. The segments
from mid-level groups fit with segments from their own group and a combination
of lower level groups (see the relations between groups in figure 3.3).

In the example in figure 3.3 the low-level groups are the C-groups. The mid-level
groups, in this case B-groups, are compatible with a combination of low-level
groups. Eg. B2 is compatible with either C3, C4 or C5. This can result in a
combination of three different segments from group C5 and one segment from
group B2. But, a combination with a segment from group B2 and one from
C3, C4 and C5 each is not possible since groups are not compatible with other
groups on the same level. In the same way a combination of B1 and B2 is also
not possible. There is one highest group which is compatible with all groups
and thus also with all mid-level groups. This might result in a combination of

Figure 3.2: Possible segments in a group.

A1, B1 and two segments from C1. There may not be many tracks that fit
this highest group ,except for example some percussion segments, and it could
also be left completely empty serving only a symbolic role in the hierarchical
structure.

Of course, this hierarchy can consist of more than three levels. Another level
could be added containing for example a group that fits with group B1 and B2
but not with B3 (not shown in figure 3.3). This group would then be placed
between the A- and B-level. Using this type of hierarchy, not all segments have
to fit together and a large amount of possibilities and variety is maintained
through combining the different groups.

When all segments in a combination fit together, according to the grouping
hierarchy, the combination is approved.

3.2.3 Amount of Change

This rule monitors the change between the currently playing combination and
the newly chosen combination. When there are multiple tracks that all have a
range of different segments it is easy to create combinations that have nothing
in common with the previous combination. As mentioned by Fay et al. [12, 373]
”Too much variation, however, can unglue the music’s cohesion”. It can also
increase the chance of listener fatigue[9] and make the sequence of combinations
feel like just that, a sequence of combinations, instead of feeling like a cohesive
soundtrack. Thus, the Amount of Change rule limits the difference in mood
between the old and new combination. For example, the maximum difference
could be set to 2 new segments. So a hypothetical combination of S1, S2, S3
and S4 can’t be followed by a combination of S5, S6, S7 and S8 but can be

Figure 3.3: Group Hierarchy (example).

followed by a combination of S1,S2,S7,S8 for example. The maximum amount
of change however does depend on the amount of change between the old and
new parameter values. If all parameters suddenly experience a big shift the
maximum amount of change may go up to 4 and all segments are allowed to
change. In this way it is still able to accommodate large or sudden in-game
changes while staying congruent in other situations.

If a combination of segments passes these three main rules it will be the next
playing combination. If not however, a new combination of segments is chosen
and run by all rules until a combination is found that satisfies all three (fig 3.1).

3.3 Used Technologies

In order to have smooth playback of music a dedicated audio engine dedicated
can be used. When dealing with multiple segments which all fit together it is
important to have sample perfect transitions. Max/MSP[2] is a visual program-
ming tool which is used mainly for audio purposes. As discussed in related work,
visual audio programming tools have already been used for creating and regulat-
ing music and sound in games. The free alternative of Max/MSP, PureData[20],
has a library called LibPD[1] which can run alongside Unity[3]. The visual as-
pect allows a non-programmer to more easily understand what is happening and
usually allows for easier troubleshooting. In this case and for this prototype,
Max/MSP was used. Even though it is not free and as light as PureData, the
ease of use and the availability of more dedicated objects for specific tasks makes
it more intuitive. Whether or not it is possible, technically or license-wise, to

implement Max/MSP into a game engine such as Unity is not a problem here.
The goal of the prototype is merely a proof of concept. When the entire struc-
ture of the program is clear and tested it is still possible to port it to PureData
or another programming language if necessary.

3.4 Discussion

Procedural Mixing in the current stage already shows decent results. The group-
ing hierarchy works well and using parameters to request a new combination
allows for a large variation in feedback to gameplay. As a proof of concept Pro-
cedural Mixing works good enough to warrant a next step in which cooperation
with a game development team is important for proper testing and adjustments
to the system.

As always with a prototype, there is room for improvement. While the main
idea shows promise, some additions are needed for an improved experience.
Firstly, the content pool of music segments needs to be increased. Currently
there are between 20 and 30 segments in the system which only allows for a
very limited number of combinations. When taking the grouping compatibility
and parameter rating into account the amount of combinations for a random
set of parameter values might be 1 or perhaps not exist at all. If the content
pool can be increased such that any set of parameter values has at least two
possible combinations this would improve the flexibility and experience of the
system drastically.

While the currently implemented rules can provide interesting results when
combined with a larger content pool, more rules can be added for a better ex-
perience. These additions can monitor for example the mix of the combinations
to make sure that a certain frequency band is not too saturated and making
the whole sound muddy. Another rule can monitor the link between segment
combinations. It is possible that the composer would want to create melodies
that are longer than the standard segment length. When certain melodies have
follow-up segments that extend the melody, this rule could suggest a follow-up
segment for the new combination and ensure a longer build up for the melody
over several combinations.

Lastly, due to this being a prototype the choice was made to use grouping instead
of machine learning for compatiblity between segments. Still, replacing the
grouping with machine learning might provide interesting results. Ideally, the
composer would judge a wide array of random combinations and judge whether
they fit together. But as coined by J.A. and Juslin [13] and later confirmed
by Berg and Wingstedt [7], non-musicians are just as capable of experiencing
musical emotions as musicians are and thus are also able to judge such an
array of combinations. After a sufficient number of iterations the system will
have a map of which segments fit together and which don’t. Segment rating
might be implemented in the same process as the grouping. Here the whole

combination would be judged on the parameters and again, after a sufficient
number of iterations, the system is able to deduct the rating for each segment
individually.

Chapter 4

Music Timing

As games increase in size and budget its production qualities also increase. More
and more scores are recorded by large orchestras and orchestral soundtracks for
some games rival the quality of those made for blockbuster movies. When
dealing with games that benefit from these types of soundtracks we run into a
problem. The non-linearity of games does not immediately fit with the linear
nature of blockbuster nature of orchestral scores. In a film context, these scores
synchronize exactly to cues in the film and thereby enhance the effect this
moment has. It might be expected that this positive effect can also be used to
amplify the impact of certain events in a game with an orchestral soundtrack.
Still, modifying the soundtrack at any moment is tricky since it has a certain
rhythm, timing and flow. Instead of trying to modify a fairly linear soundtrack,
what if in-game events are to be modified such that they are more congruent
with the soundtrack? Many videogames already have non-linear events that
can happen at any moment and are usually the result of AI behaviour. Some
of these events can be adapted to fit the timing of the music so the game can
fully profit from having an orchestral score.

This chapter presents the second part of my work and another solution to some
of the problems in interactive music. The system described here is called Music
Timing and is based on principles described in the previous paragraphs.

4.1 Prototype

An experiment has been performed to test the validity of the assumption that
the impact of in-game events depends on its timing with regard to the orchestral
score. If it is true that strongly timed music underscores important game events,
then it is possible to use a fairly linear film-like score while still providing feed-
back to game events, if used in tandem with the Music Timing system. In this
system the audio engine tell would tell the game engine about upcoming beats

16

in the music. The game engine would then shift the timing of some in-game
events such that they align with these beats.

In order to test this assumption, two videos were created, one with the score and
game events being well-aligned and the other without having the score and game
events being well-aligned. The video consisted of a gameplay segment from The
Elder Scrolls V: Skyrim (Bethesda Game Studios, 2013). Using video editing
software, important game events were synchronized to the closest first beat of
the score. These important events could for example be: A dragon landing
from the sky, a dragon breathing fire or a dragon flying away into the sky. The
second video was subtly edited such that none of these important events lined
up with the score but without noticeably breaking the visual flow of the movie.
For both videos, the audio was identical and the only element that was different
between the videos was the synchronization of the imagery to the audio.

4.2 Research

4.2.1 Objective

This study is aimed at finding out whether adjusting timing of in-game events
according to the music influences the impact of these events. This leads to
the following research question: Does the impact of in-game events depend
on whether these game events and a strongly timed orchestral score are well-
aligned? And this in turn leads to two hypotheses:

H0: There is no change in the impact of in-game events when game events and
strongly timed orchestral music are well-aligned.

H1: There is a change in the impact of in-game events when game events and
strongly timed orchestral music are well-aligned.

4.2.2 Method

Participants

There were 30 participants in total, 15 in each condition. All participants were
selected using Accidental Sampling and the majority were Dutch university
students. Ages ranges from 19 to 26, with a mean age of 22.3 years. 26 were
male (86.7%) and 4 were female (13.3%), both distributed evenly across each
condition.

Questionnaire

The questionnaire consisted of four sections. The first section regards general
questions about participants opinion about the game, video and music as well
as two questions about their impression of the in-game characters. This section
will supply some general data about the experience of the participant such as
to whether they generally liked the music. This is important because if the
music is perceived as bad it can influence the results in a negative way. The
second section uses the PANAS scale [23] to measure the difference in influ-
ence the two conditions have. The scale is used to, according to Watson et al.
[23], measure the two primary dimensions of mood — Positive and Negative
Affect. The scale is comprised of 20 items, of which 10 each represent either
the positive or negative dimension of mood. This section should represent the
effect the two conditions have on the moods of the participant and provide good
reliability since the scale has been well validated. The third section deals with
questions regarding timing and matching of gameplay of music. Some questions
dealt with similar topics but did so in an inverse manner or with a different
formulation. This section should show if players noticed the synchronization
differences between the two conditions. It can show whether the synchroniza-
tion had an effect on the participants impression of the in-game characters. The
fourth section serves to ask some general demographic questions as well as the
participants familiarity with gaming and the game in question.

Conditions

There are two different conditions that will be tested: synchronized and not-
synchronized. The difference between the two conditions lies in the videos that
will be shown to the participant. The imagery in the synchronized video was
synchronized to the music while the not-synchronized video was not. Audio was
identical in both conditions.

Data Analysis

The data from the digital questionnaire has been analyzed after all participants
had finished the user test. During the analysis the results were tested on signif-
icance and reliability and have been described in the results section. Also, all
statistical analysis was performed using SPSS 22.

4.2.3 Control and Manipulation Check

On average all participants found both the music and watching the video more
interesting than not, with respective means of 3.4 and 3.3 on a 5-points scale.
This gives reason to believe that the quality of the video and music did not
distract from the user test.

η N σ

The music was... 3.400 30 1.0034

I found watching the video... 3.333 30 .8841

In order to verify that the intended difference in conditions was indeed perceived
as such, a so called manipulation check is performed. Between both conditions
there was an intended difference with regard to the synchronization of music
and events. One video had no events that were synchronized to the music and
the other video did have these events synchronized to the music. When looking
at the following questions: ”The music felt in line with the gameplay”,”In-game
events felt not in line with the music” and ”The music underlined big in-game
events”, it can be seen that creating two different conditions that differ in their
alignment of video and audio has been successful. Grouping these questions to
a Timing variable (α = .774) outputs the following results.

Manipulation Check for Timing Conditions

df F η p

Timing 28 1.986 .2.533 .005**

**<0.01

Now that is has been determined that the two conditions were appropriately
differentiated, one can determine whether there is an actual change between the
two conditions.

4.2.4 Results

When looking at the PANAS Scale [23], it can be seen that the results seem
internally consistent (α = .825). Still, independent of what they thought of
the videos, the participant’s mood was not significantly affected by the different
conditions. Other questions regarding for example the perceived power of in-
game characters supplied no significant results.

Still, some questions did provide results with statistical significance. The first 5-
point scale question is ”I found watching this video (Dull — Exciting)”. Looking
at the results it can be deducted that participants enjoyed watching the syn-
chronized video more than the non-synchronized video.

Influence of Enjoyment

df F η p

I found watching this video... 28 .217 .6667 .036*

*<0.05

The second 5-point scale question is ”The music distracted from the video (Dis-
agree Completely — Agree Completely) ”. Looking at the table it can be seen
that participants found the music in the non-synchronized video more distract-
ing even though the audio of both conditions was identical.

Influence of Focus

df F η p

The music distracted from the video 28 .138 -.6667 .039*

*<0.05

4.2.5 Conclusion

According to the research findings the following can be concluded. Both con-
ditions were appropriately differentiated such that it was apparent to the par-
ticipants (α = .774, p = 0.005). This allows for increased confidence in further
findings during the research. Regarding enjoyment, participants enjoyed watch-
ing the synchronized video more than the non-synchronized video (p = 0.036).
Furthermore, participants were more distracted by the music during the video
that was not synchronized than during the video that was synchronized.

According to these results, strongly timed orchestral scores have potential for
positive influence on impact of in-game events. This positive influence is only
apparent when score and game-events are well-aligned because if score and game
events are not well-aligned it will cause the music to distract the player (See
table Influence of Focus) and it will cause less enjoyment for the player (See
table Influence of Enjoyment). If games want to make use of this effect they
should be designed with this aspect in mind. It should be possible for in-game
events to be aligned to the score by adjusting their timing and thus allowing
these game-events to have more impact.

4.2.6 Discussion

The PANAS Scale [23] did not show any significant change of the participants
mood between the two conditions. A possible explanation might be that the
(mainly Dutch) participants misinterpreted terms and thus provided differing

answers. Another reason might be that some terms are not directly relevant to
watching a video and thus cause participants to vary more in their interpretation
and answers. Still, these possible explanations are merely food for thought and
have no basis from data. Some users mentioned they noticed a lack of sound
effects in the video. While it is true that all sound was removed and only music
was replaced, the audio was identical in both videos. Still, it is possible that the
synchronized music has partially taken over the role of sound effects in providing
feedback for certain in-game events.

Chapter 5

Discussion and Future
Work

First, a short recap of the conclusions of both sections.

According to the results of the Music Timing user tests, strongly timed or-
chestral scores have potential for positive influence on the impact of in-game
events. But, it is only apparent when score and game-events are well aligned.
Otherwise, it might distract the player or cause less enjoyment.

In this proof of concept stage, Procedural Mixing shows decent results. The
currently used rules work well to bring variation between segment combination
and provide feedback to gameplay situations. The grouping hierarchy works
well and gives the composer more freedom in composing.

5.1 Music Timing

The PANAS scale used in the Music Timing research did not show any significant
results. This may have been the result of the (mainly) Dutch participants
misinterpreting the terms used in the scale. Another reason may be that some
terms do not directly apply to watching a video and thus allow for a broader
interpretation with regard to the experiment. Some participants noted the lack
of sound effects in the video. While audio was identical for both videos, this
may have influenced the results of the experiment since the music may have
partially taken over the role of sound effects.

The next step in Music Timing would be to implement the system into a game.
This requires the game to have events that can be adjusted such that they
synchronize to the beat in the music. This usually requires consideration from
the beginning of development and is hard to implement in a later stadium.
Still, taken into regard during development and implemented correctly it could
provide interesting results.

22

5.2 Procedural Mixing

The main limitation for Procedural Mixing currently lies in the content. More
content should be produced to test with the system so that there are enough
segment combinations for every possible situation. This should already increase
the quality of the output drastically and ensure better suited music for every
scenario.

The next step would be to have more rules added to the system. A possible
addition can be a section that monitors the frequency spectrum and blocks
combinations that sound muddy when multiple segments operate in the same
frequency band. Another addition can be a follow-up section. This process
monitors the current combination and suggests segments that are follow-up
segments of the ones currently playing. These follow-up segments will probably
have been determined beforehand and are a continuation of the melody that was
started in the previous segment. Last, machine learning can be implemented
instead of grouping the segments manually. Ideally, the composer would listen
to a wide array of combinations and judge whether or not they fit. After enough
iterations the system will have a map of which segments fit together and which
don’t. Parameter rating could also be implemented into this process.

The next step for Procedural Mixing would be to continue development of the
system together with a game development team. This allows for proper testing
of the system with gameplay and adjusting for example the parameters in order
to be specifically tuned to the game being developed. This will benefit the
development of the system a lot and provide the development team with a
music system that can provide detailed musical feedback and enhance the overal
experience.

Chapter 6

Acknowledgements

First and foremost, I would like to thank my research supervisor, Dennis Rei-
dsma, for aiding me during every step of the realization of this dissertation and
for always providing thoughtful feedback where it was needed. I would also like
to thank the STEIM institute for providing feedback to my ideas and helping me
further define the final subject of this dissertation. For providing me with feed-
back and pointing me to material I would never have found otherwise I would
like to thank Damian Kastbauer. Lastly, I would also like to thank Andy Farnell
for providing me with feedback in the earliest stages of my dissertation. While
the eventually chosen subject differs greatly, the early feedback still provided
invaluable information and constructive criticism.

24

Bibliography

[1] LibPD. URL https://github.com/libpd/libpd/wiki/unity.

[2] Max Documentation and Resources - Cycling ’74 Wiki. URL
http://cycling74.com/wiki/index.php?title=Max Documentation and Resources.

[3] Unity - Game Engine. URL http://unity3d.com/.

[4] home of psai — periscope studio audio intelligence. URL
http://www.homeofpsai.com/.

[5] Demonstration of SSXs RUMR system — Designing Sound, 2012. URL
http://designingsound.org/2012/03/demonstration-of-ssxs-rumr-system/.

[6] Audiokinetic. Audiokinetic - WWise. URL
https://www.audiokinetic.com/.

[7] Jan Berg and Johhny Wingstedt. No Title. ACE ’05 Proceedings of the
2005 ACM SIGCHI International Conference on Advances in computer
entertainment technology, (ACE 2005):164–171, 2005.

[8] M. Brinkmann. PureData patches. URL
http://www.martin-brinkmann.de/.

[9] Karen Collins. An Introduction to the Participatory and Non-Linear As-
pects of Video Games Audio. 2007.

[10] Karen Collins. An Introduction to Procedural Music in Video
Games. Contemporary Music Review, 28(1):5–15, February
2009. ISSN 0749-4467. doi: 10.1080/07494460802663983. URL
http://www.tandfonline.com/doi/abs/10.1080/07494460802663983.

[11] Andy Farnell. An introduction to procedural audio and its application in
computer games. Audio Mostly Conference, (September):1–31, 2007. URL
http://www.cs.au.dk/ dsound/DigitalAudio.dir/Papers/proceduralAudio.pdf.

[12] T.M. Fay, S. Selfon, and T.J. Fay. Directx 9 Audio Exposed: Interactive
Audio Development. page 373. 2004.

25

[13] Sloboda J.A. and P.N. Juslin. Psychological Perspectives on Music and
Emotion. Music and Emotion: Theory and Research, 2001.

[14] Michael O Jewell, Mark S Nixon, and Adam Pr. CBS : A Concept-Based
Sequencer for Soundtrack Composition. pages 0–3, 2003.

[15] D. Kastbauer. Crossing the Two-Way Street. Game Developer Magazine,
page 65, 2012.

[16] J. Murray. Hamlet on the Holodeck. (MA: MIT Press), 1998.

[17] L.J. Paul. The Generative Music and Procedural Sound Design of Sim Cell,
2013. URL https://www.youtube.com/watch?v=0xr4aL1C24E.

[18] M.F. Pignatiello, C.J. Camp, and L.A. Rasar. Technique, Musical mood
induction: An alternative to the Velten. Journal of Abnormal Psychology,
95(3):295–297, 1986.

[19] David Plans and Davide Morelli. Experience-driven procedural music gen-
eration for games. IEEE Transactions on Computational Intelligence and
AI in Games, 4(3):192–198, 2012.

[20] Miller Puckette. Pure Data PD Community Site. URL
http://puredata.info/.

[21] Firelight Technologies. FMOD. URL http://www.fmod.org/.

[22] Raison Varner. Building Contextualized Sys-
tems for the Next Generation, 2013. URL
http://creatingsound.com/2013/12/building-contextualized-systems-for-the-next-generation/.

[23] D Watson, L a Clark, and a Tellegen. Development and validation of brief
measures of positive and negative affect: the PANAS scales. Journal of
personality and social psychology, 54(6):1063–1070, 1988.

[24] Rene Wooller, Andrew R Brown, Eduardo Miranda, Rodney Berry, and
Joachim Diederich. A framework for comparison of process in algorithmic
music systems. (Eno 1996):109–124, 2005.

Audio-Visual References
Borderlands 2 (Gearbox Software, 2012)
Dishonored (Arkane Studios, 2012)
Proteus (Curve Studios, 2013)
SimCell (Strange Loop Games, 2013)
Spore (Maxis, 2008)
SSX (EA Canada, 2012)
The Elder Scrolls V: Skyrim (Bethesda Game Studios, 2013)

