
Running the example scripts

(and how Kaldi works)

Overview of this talk

• Will be going through the process of
downloading Kaldi and running the Resource
Management (RM) example.

• Will digress where necessary to explain how
Kaldi works

• This talk covers the UNIX installation process
(installation using Visual Studio is described
in the documentation)

• The scripts are in bash (Kaldi can work with
any type of shell, but the example scripts are
done this way as many people are familiar
with this shell)

Downloading and installing Kaldi

• These instructions also at kaldi.sf.net

• Make sure svn (Subversion) is installed

• This is a version control system, like cvs

• Check out Kaldi:
svn co https://kaldi.svn.sourceforge.net/svnroot/kaldi

• Instructions in kaldi/trunk/INSTALL

• A few simple steps (run install script; configure;
make)… takes a while though

• Installs some tools the scripts require (sph2pipe,
IRSTLM, OpenFst, …), plus Kaldi

• e-mail me if it doesn’t work!

What’s in the repository

• In kaldi/trunk/ (the “current” version):

• tools/ (Installation scripts to install external

tools)

• src/ (The Kaldi source code)

• base/, matrix/, util/, feat/, tree/, optimization/,

gmm/, transform/, sgmm/, fstext/, hmm/, lm/,

decoder/, bin/, fstbin/, gmmbin/, fgmmbin/,

sgmmbin/, featbin/

• egs/

• rm/s1/ (Resource Management example dir)

• wsj/s1/ (Wall Street Journal example dir)

Building and testing Kaldi

• [once tools/ installation done]

• Change directory to src/

• Configure: “./configure.sh”

• This hand-written script creates a file “kaldi.mk”
invoked by Makefiles in subdirectories

• Make: “make –j 4” [takes a while� parallel]

• Programs created in subdirectories *bin/

• Test: “make test”

• Runs unit-tests that test various components

• Can also type “make valgrind” (uses valgrind to
look for memory errors in unit tests)

Running the example scripts

• We’ll talk about the Resource Management

example script.

• Obtain LDC corpus LDC93S3A

• Scripts need the directory name where you

put this.

• cd to egs/rm/s1, see run.sh

• The following slides will describe the steps in

run.sh, and what they do.

Data preparation

• cd data_prep/; ./run.sh /path/to/RM; cd ..

• Things created by this step:

• G.txt (bigram decoding graph, in OpenFst

text format)

head train_sph.scp

trn_adg04_sr009 /foo/sph2pipe –f wav \

/bar/adg0_4/sr009.sph |

trn_adg04_sr009 /foo/sph2pipe –f wav \

/bar/adg0_4/sr009.sph |

...

Data preparation cont’d
• Lexicon in text format (a script will convert this

to FST format before being used by Kaldi):

head lexicon.txt

A ax

A42128 ey f ao r t uw w ah n t uw ey td

AAW ey ey d ah b y uw

...

head train.utt2spk

trn_adg04_sr009 adg0

trn_adg04_sr049 adg0

...

• Utterance to speaker (utt2spk) maps (will be
read directly by Kaldi tools… also spk2utt maps.

Data preparation cont’d

• Transcriptions in text format

• Note: will be converted to integer format using

symbol table, before being used by Kaldi

head train_trans.txt

trn_adg04_sr009 SHOW THE GRIDLEY+S TRACK IN BRIGHT
ORANGE WITH HORNE+S IN DIM RED

trn_adg04_sr049 IS DIXON+S LENGTH GREATER THAN
THAT OF RANGER

...

Next steps after data_prep/

• steps/prepare_graphs.sh

• First prepares symbol-tables for words and
phones (OpenFst format):

head data/words.txt

<eps> 0

A 1

A42128 2

AAW 3

...

head data/phones.txt

<eps> 0

aa 1

ae 2

...

Next steps after data_prep/

• Next, this script prepares binary-format FSTs,
with integer labels only (no inbuilt symbol
tables)

• data/G.fst, data/L.fst, data/L_disambig.fst

• G is the grammar, L is the lexicon.

• The lexicon includes silence.

• L_disambig.fst includes “disambiguation
symbols” (search online for hbka.pdf and
read Mohri’s paper to find out what these
are).

Next steps after data_prep/

• Also prepares files that contain lists of integer

id’s of silence and non-silence phones

• These are needed for various purposes by the

training and testing scripts

cat data/silphones.csl

48

cat data/nonsilphones.csl

1:2:3:4:5:6:7:8:9:10:11:12:13:14:15:16:17:18:19:20: 21:22
:23:24:25:26:27:28:29:30:31:32:33:34:35:36:37:38:39 :40:4
1:42:43:44:45:46:47

Computing raw MFCC features

• An example of the actual command that one

of these scripts runs is:

mfccdir=/big/disk/mfccdir

steps/make_mfcc_train.sh $mfccdir

steps/make_mfcc_test.sh $mfccdir

compute-mfcc-feats –use-energy=false \

scp:data/train_wav.scp \

ark,scp:/foo/raw_mfcc.ark,/foo/raw_mfcc.scp

• “ark”==archive, “scp”==script file

• Data goes in single large archive file.

Script and archive files…

• Archive format is [key] [object] [key]
[object]…

• Archives may contain binary or text data

• Text archives are often line-by-line (depends
on text form of the object).

head /foo/raw_mfcc.scp

trn_adg04_sr009 /foo/raw_mfcc.ark:16

trn_adg04_sr049 /foo/raw_mfcc.ark:23395

...

head –c 20 foo/raw_mfcc.ark

trn_adg04_sr009 ^@BFM [binary data...]

Script and archive files…

• Script format is [key] [extended-filename]\n

[key] [extended-filename]\n …

• In general, extended filenames include

“/file/name”, “some command|”, “|some

command”, “-”, “/offset/into/file:12343”

• To understand how we deal with scripts and

archive, need to understand the “Table”

concept…

The Table concept

• A Table is a collection of objects (of some
known type), indexed by a “key”.

• A “key” is a nonempty, space-free string, e.g.
“trn_adg04_sr009” (an utterance), “adg04”
(a speaker)

• There is no single C++ class corresponding to
a table…

• There are three (templated) Table classes:

TableWriter

SequentialTableReader

RandomAccessTableReader

The Table concept + templates

• The Table is templated, but not on the type of
object it holds.

• It’s templated on a class we call a “Holder”
class, which contains a typedef Holder::T that is
the actual type the Table holds.

• E.g. “Int32VectorHolder” is a name of a Holder
class.

• The Holder class tells the Table code how to
read and write objects of that type

• I.e. it has appropriate Read and Write functions

The Table concept: example

• Suppose in your program you want to read,
sequentially, objects of type std::vector<int32>,
indexed by key.

• The user would provide a string (an “rspecifier”)
that tells the Table code how to read the object.

std::string rspecifier = “ark:/foo/my.ark”

SequentialTableReader<Int32VectorHolder>

my_reader(rspecifier);

for(; !my_reader.Done(); my_reader.Next()) {

std::string key = my_reader.Key();

const std::vector<int32> &value(my_reader.Value());

... do something ...

}

The Table concept: purpose

• The Table code provides a convenient I/O

abstraction (without the need for an actual

database).

• Normal Kaldi code interacts with sets of objects

(indexed by key) in three ways:

• Writing keys and objects one by one (TableWriter)

• Reading keys and objects one by one

(SequentialTableReader)

• Accessing objects with random access

(RandomAccessTableReader)… this class will tell you

whether a key is in a table or not.

The Table concept: hard cases

• The Table code always ensures correctness (to do this,
it may have to read all objects into memory).

• Note: the three Table classes are actually each
polymorphic (implementation differs depending if it’s
a script-file or archive, and also other factors).

• The implementation of most cases is fairly simple

• There is one tricky situation: accessing an archive via
random access.

• The archive may be a pipe. In this case we can’t
fseek(), so would have to cache all the objects in
memory in case they’re asked for later.

• Next slide will describe how we deal with this.

The Table concept: options

• We can provide various options in the
“rspecifiers” and corresponding “wspecifiers”.

• The simplest one is specifying text-mode, e.g.
(for writing) “ark,t:foo.ark”

• Others are to make life easier for the Table code
(i.e. enable it to cache fewer objects in memory).

• E.g. “ark,s:foo.ark”: “s” asserts that the archive is
sorted on key (stops us having to read to the end
of the archive if key not present).

• Common option when reading is “s,cs”: “s”
asserts archive is sorted, “cs” that the keys are
queried in sorted order. Avoids object caching.

Computing MFCCs (cont’d)

• Here, “scp:data/train_wav.scp ” is an rspecifier

that says to interpret “data/train_wav.scp ” as

a script file to read from

• “ark,scp:/foo/raw_mfcc.ark,/foo/raw_mfcc.scp ”

is a wspecifier that says to write a (binary)

archive, and also a script file with offsets into

that archive (for efficient random access).

compute-mfcc-feats –use-energy=false \

scp:data/train_wav.scp \

ark,scp:/foo/raw_mfcc.ark,/foo/raw_mfcc.scp

Monophone training

• This script first sets up some variables…

steps/train_mono.sh

dir=exp/mono

create $dir/train.scp which is a data subset.

feats="ark:add-deltas scp:$dir/train.scp ark:- |"

• The variable $feats will be used as a command-line
argument to programs, treated as an rspecifier.

• The part after “ark: ” is treated as an extended
filename (and since it ends with “| ”, the command is
invoked and we read from the output).

• The program add-deltas writes to “ark:- ”, i.e. it
writes an archive on the standard output.

Monophone training; topology
• Next, the script creates a file $dir/topo which specifies

phone topologies.
<Topology>

<TopologyEntry>

<ForPhones>

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
46 47

</ForPhones>

<State> 0 <PdfClass> 0 <Transition> 0 0.75 <Transit ion> 1 0.25
</State>

<State> 1 <PdfClass> 1 <Transition> 1 0.75 <Transit ion> 2 0.25
</State>

<State> 2 <PdfClass> 2 <Transition> 2 0.75 <Transit ion> 3 0.25
</State>

<State> 3 </State>

</TopologyEntry>

Next is the topology entry for silence, which we won’t show…

</Topology>

Monophone training; initialiation

• The next command does a flat start of the
model

gmm-init-mono $dir/topo 39 $dir/0.mdl $dir/tree

• This program also creates a “trivial” decision

tree with no splits

• Note: monophone system is treated as a

special case of a context-dependent system,

with zero phones of left and right context.

• Note: in the real scripts we redirect the

stderr into log files (all logging on stderr).

Monophone training: creating

decoding graphs

• Write an archive containing the fully expanded
FST corresponding to the transcription of each
utterance.

compile-train-graphs $dir/tree $dir/0.mdl data/L.fs t \

"ark:$dir/train.tra” \

"ark:|gzip -c >$dir/graphs.fsts.gz"

• Note: the input file $dir/train.tra would

contain transcriptions in integer form, e.g.:

trn_adg04_sr009 763 843 367 879 417 75 622 974 407 417
227 694

trn_adg04_sr049 436 235 483 362 841 842 611 679

trn_adg04_sr089 763 345 842 30 88 617 881

...

Monophone training: initial alignment
align-equal-compiled \

"ark:gunzip –c $dir/graphs.fsts.gz|“ "$feats" ark:- | \

gmm-acc-stats-ali $dir/0.mdl "$feats“ ark:- dir/0.acc ;

• The first command in this pipe (align-equal-compiled)
does an equally-spaced alignment of a random path
through each FST.

• Its output is an “alignment” for each utterance

• An alignment is a vector of “transition-ids”, one per
frame.

• A transition-id is like the index of a p.d.f., but with a bit
more information encoded in it (the phone, etc.)

• The program gmm-acc-stats-ali accumulates stats for
GMM training, given alignments.

gmm-est $dir/0.mdl $dir/0.acc $dir/1.mdl;

Monophone training

gmm-align-compiled –beam=8 --retry-beam=40 \

$dir/$x.mdl "ark:gunzip -c $dir/graphs.fsts.gz|“ \

"$feats" ark,t:$dir/cur.ali

• On selected iterations of training, re-align training data

(Viterbi alignment):

• Realign almost every iteration during monophone phase

• Typically only about 3-4 times during triphone training.

• Mixing-up is an option to the update program.

• Gaussians allocated according to an overall budget we
provide, proportional to γ0.2,where γ is the data count

• E.g.: increase this budget linearly for 15 iterations, then
leave it fixed for another 15.

Triphone training

gmm-align --beam=8 --retry-beam=40 exp/mono/tree \

exp/mono/30.mdl data/L.fst "$feats" \

ark:data/train.tra ark:exp/tri1/0.ali

• First stage is to align all the data with monophone model

• Next accumulate stats for training the decision tree:

acc-tree-stats --ci-phones=48 exp/mono/30.mdl \

"$feats" ark:exp/tri/0.ali exp/tri/treeacc

Triphone training: questions etc.

• Automatically generate sets of phones that will be
“questions”, via tree clustering (do binary splitting of
phones, and get questions of all sizes).

cat data/phones.txt | awk '{print $NF}' | \

grep -v -w 0 > exp/tri/phones.list

cluster-phones exp/tri/treeacc exp/tri/phones.list \

exp/tri/questions.txt

compile-questions exp/tri/topo exp/tri/questions.tx t \

exp/tri/questions.qst

• Create file that specifies tree “roots”: in this case, one

per phone (but could have shared roots).

scripts/make_roots.pl --separate data/phones.txt \

$silphonelist shared split \

> exp/tri/roots.txt

Triphone training: building tree

build-tree --max-leaves=1500 exp/tri/treeacc \

exp/tri/roots.txt exp/tri/questions.qst \

exp/tri/topo exp/tri/tree

• Initialize the model for this tree

gmm-init-model exp/tri/tree exp/tri/treeacc \

exp/tri/topo exp/tri/1.mdl

• Build the decision tree

• Convert alignments generated from the monophone
system to be consistent with the new tree:

convert-ali exp/mono/30.mdl exp/tri/1.mdl \

exp/tri/tree ark:exp/tri/0.ali ark:exp/tri/cur.ali

• Rest of training similar to monophone case.

Decoding: building the graph

scripts/mkgraph.sh exp/tri/tree exp/tri/30.mdl \

exp/graph_tri

• Compose L (lexicon) with G (grammar), determinize, minimize

fsttablecompose data/L_disambig.fst data/G.fst | \

fstdeterminizestar --use-log=true | \

fstminimizeencoded > exp/tri/LG.fst

• Script to build graph is invoked by:

• Get list of disambiguation symbols:

grep '#' data/phones_disambig.txt | \

awk '{print $2}' > $dir/disambig_phones.list

• This file now contains “49\n50\n51\n”.

Decoding: building the graph, cont’d

fstcomposecontext \

--read-disambig-syms=$dir/disambig_phones.list \

--write-disambig-syms=$dir/disambig_ilabels.list \

$dir/ilabels < $dir/LG.fst >$dir/CLG.fst

• Compose (dynamically generated) C with LG:

• The input symbols of CLG.fst represent context-dependent

phones. [note: command above defaults to trigram]

• The file $dir/ilabels contains the information that maps these

symbol id’s to phonetic-context windows.

• Next command generates the “H” tranducer...

• actually Ha is H without self-loops.

make-h-transducer --disambig-syms-out=$dir/tstate.l ist \

$dir/ilabels exp/tri/tree exp/tri/model \

> $dir/Ha.fst

Decoding: building the graph, cont’d

fsttablecompose $dir/Ha.fst $dir/CLG2.fst | \

fstdeterminizestar --use-log=true \

| fstrmsymbols $dir/tstate.list | fstrmepslocal | \

fstminimizeencoded > $dir/HCLGa.fst

• … the transducer Ha.fst has “transition-ids” as its input

symbols and context-dependent phones as output.

• transition-ids are like p.d.f. indexes, but also guarantee

to encode the phone, HMM-position etc.

• Compose Ha with CLG, determinize, remove

disambiguation symbols , remove epsilons, minimize:

add-self-loops exp/tri/30.mdl \

< $dir/HCLGa.fst > $dir/HCLG.fst

• Add self loops to get final graph:

Decoding: decoding command

gmm-decode-faster --beam=20.0 --acoustic-scale=0.08 333 \

--word-symbol-table=data/words.txt exp/tri/30.mdl \

exp/graph_tri/HCLG.fst “$feats” \

ark,t:exp/decode_tri/test_feb89.tra \

ark,t:exp/decode_tri/test_feb89.ali

• First set up the features variable (shell variable)

feats="ark:add-deltas scp:data/test_feb89.scp ark:- |"

• Decode:

• Note: this command outputs state-level traceback

• We can use this to compute transforms

• Decode again with separate command.

Summary (scripts)

• Have described the simplest path through

the scripts

• Have summarized some of Kaldi’s I/O

mechanisms

• Have given some idea of how training and

decoding works in Kaldi

